Clark County Wind Tunnel Study

Section III

Estimation of PM₁₀ vacant land emissions factors for Unstable, Stable and Stabilized lands using data from 1995 and 1998-1999 UNLV wind tunnel studies of vacant and dust-suppressant treated lands

January 16, 2001 – Second Final Report

Estimation of PM-10 vacant land emissions factors for Unstable, Stable and Stabilized lands using data from 1995 and 1998-1999 UNLV wind tunnel studies of vacant and dust-suppressant treated lands

> David James, Ph.D., P.E. Joe A. Haun, B.S. M.S Tina Gingras, B.S. Andrea Fulton, B.S. Johan Pulgarin Gina Venglass, B.S. Jon Becker, B.S., M.S. Sherrie Edwards, B.S.

Civil and Environmental Engineering Department University of Nevada, Las Vegas 4505 Maryland Parkway Las Vegas NV 89154-4015

Second Final Report

for

Clark County Department of Comprehensive Planning Clark County Government Center 500 S Grand Central Parkway Box 551741 Las Vegas NV 89155 - 1741

January 16, 2001

Table of Contents

Acknowledgments

Introduction

Section 1	Wind Tunnel Description, Field Methods, 1995 Site Locations and Uncertainty Analyses
Section 2	1995 Wind Tunnel Field Data and Uncorrected Flux Calculations
Section 3	1995 Wind Tunnel Spike-corrected Individual and Cumulative Fluxes
Section 4	1995 Wind Tunnel Individual and Cumulative Spike Masses
Section 5	1995 Stable and Unstable Cumulative Fluxes and Spike Masses, classified by major soil group and stability classification
Section A	1995 Unstable Cumulative Fluxes and Spikes, sorted by wind speed category
Section B	1995 Stable Cumulative Fluxes and Spikes, sorted by wind speed category
Section C	Statistical Summary Tables and Figures, 1995 Unstable and Stable PM-10 emission factors and spike masses
Section D	1995 Wind Tunnel Field Study aerodynamic roughnesses and PM-10 initiation velocities
Section E	1998-1999 Wind Tunnel emission factors for Stabilized surfaces

Acknowledgments

Many individuals have contributed to the development of the information that is contained in this report.

At Clark County Comprehensive Planning, Carrie MacDougall, Will Cates, Rodney Langston, Majed Khater and Rick Matar all provided valuable inputs and data for this project. The contributions of Carrie MacDougall in developing the ideas for computation of the stabilized lands emissions factors, and Majed Khater, in providing megabytes of image data for earlier reports in this series, were especially helpful. Will Cates is also thanked for his project management oversight, and thanks to Rodney Langston for keeping us abreast of developments in the proposed PM-10 rules and ordinances.

The Clark County Health District, Air Quality Division, provided the impetus and the funding for the first wind tunnel field study in 1995, and also funded the 1998-1999 wind tunnel study of the effectiveness of dust suppressants. The Health District also provided 1999 wind field data and 1999 dust permit data that greatly facilitated computation of the valley-wide estimates. The contributions of Michael Naylor, Cheryl McDonnell-Canan, Lew Wallenmyer, Mike Sword, Femi Durosimini, Mickey Palmer, Monte Symons, and Cyndy Mikes are especially appreciated.

At UNLV, many undergraduate and graduate students have made invaluable contributions to this project. Most are listed as co-authors on this report. The contributions of graduate students Joe A. Haun, who built the UNLV wind tunnel, Tina Gingras, who ran the 1998-1999 field crew, and Jon Becker, who rebuilt and recalibrated the tunnel in 1998, and computed all the spike corrections for the 1998-1999 dust suppressant data, are especially appreciated. The industry and skills of undergraduate students Andrea Fulton in 1995, and Gina Venglass in 1998 and Johann Pulgarin, in 1999 through 2000, were especially valuable in the field and in the laboratory. Alan Sampson, civil engineering laboratory and shop technician, provided key assistance in the construction and repair of the tunnel.

Colleagues from around the world have also helped with the development of thinking and methods on this project. Duane Ono of the Great Basin Unified Air Pollution Control District very kindly lent us his time and services on several occasions as we developed our own wind tunnel in 1995, based on the one he designed and built. Jack Gilles of DRI suggested the flap sealing system for our tunnel, without which we could not have operated on hard soil surfaces, and made key suggestions about references available in the open literature. Larry Hagen of the US Agricultural Research Service, Manhattan, Kansas, has been an early and consistent supporter and resource.

Any errors or omissions in this report are the sole responsibility of the principal author, David James.

Introduction

This report:

1. Explains the methodology and uncertainties behind calculation of fluxes of wind-eroded PM-10 (emission factors) using wind tunnel measurements carried out by UNLV in 1995 and 1998-1999, and

2. Contains emission factor data developed by UNLV for unstable (disturbed or weak covering), stable (undisturbed or strong covering) and stabilized (treated with dust suppressants) vacant lands. The emission factors presented here were used earlier in UNLV's computations of Valley-wide PM-10 vacant land emissions.

In this report, the wind tunnel volumetric flow rates, PM-10 initiation velocities, erosion velocities and TSI PM-10 concentrations are converted to PM-10 fluxes (emission factors) in tons/acre/hour, and PM-10 initiation and erosion velocities extrapolated to z = 10 meters. The 1995 wind tunnel field study sampling locations and sampling methods are described. Methods used in the 1998-99 wind tunnel dust suppressant study are described and compared to the 1995 wind tunnel study.

This is the second final report developed for this Clark County Comprehensive Planningfunded project and the fourth report created for this project. The report dates and titles are:

January 16, 2001	Estimation of PM-10 vacant land emissions factors for Unstable, Stable and Stabilized lands using data from 1995 and 1998-1999 UNLV wind tunnel studies of vacant and dust-suppressant treated lands. Second final report.
September 13, 2000	Estimation of Valley-Wide PM-10 emissions using UNLV 1995 wind tunnel-derived emission factors, 1998-1999 emission factors, revised vacant land classifications, and GIS-based mapping of vacant lands. <i>Final Report</i>
March 28, 2000	Estimation of Valley-Wide PM-10 Emissions using UNLV 1995 wind tunnel measurements, revised vacant land classifications, and GIS-based mapping of vacant lands. Supplemental Task: Estimation of stabilized land PM-10 emissions using data from 1998-1999 UNLV wind tunnel study of PM-10 emissions from different dust suppressants
February 22, 2000	Estimation of Valley-Wide PM-10 Emissions using UNLV 1995 wind tunnel measurements, revised vacant land classifications, and GIS-based mapping of vacant lands

This report is divided into 10 sections that, taken together, provide a road map through the wind tunnel data, from the PM-10 and flow measurements in the field to the statistical summaries of the emission factor data, classified by wind speed category and major soil group.

Section 1 provides information about the locations and stability classifications of the 1995 wind tunnel sampling sites, 1995 wind tunnel field test methods, and mass balances. It also provides a comparison of the 1995 test methods to the 1998-1999 test methods, an uncertainty analysis, the 1995 repeatability study, and flow rate corrections.

Section 2 tabulates the soil group and stability classifications, 10 meter velocities, TSI measured PM-10 concentrations, and tunnel volumetric flow rates for each 1995 wind tunnel test run. TSI concentrations and tunnel volumetric flow rates were used to compute individual, non-spike corrected fluxes in mg/m²/min and ton/acre/hour. The equations for computing fluxes are presented.

Section 3 tabulates 1995 wind tunnel individual and cumulative spike-corrected fluxes. The method for correcting PM-10 fluxes for the effects of the initial loose PM-10 "spike" is presented. Equations for computing cumulative fluxes and example calculations are presented. Non-corrected individual flux data from Section 2 are used to compute spike-corrected individual and cumulative flux data in Section 3.

Section 4 presents the methods for computing individual and cumulative spike masses from the 1995 study, and tabulates the resulting data. Spike areas presented in Section 3 are used with TSI concentrations and wind tunnel volumetric flow rates from Section 2 to compute results shown in Section 4.

Section 5 tabulates 10 meter erosion velocities from Section 2, cumulative flux data from Section 3 and the cumulative spike data from Section 4 by major soil group and stability classification. These data are used in Section C to compute emission factors classified by soil group and wind speed range.

Section A tabulates 10 meter erosion velocities from Section 2, cumulative flux data from Section 3 and the cumulative spike data from Section 4 by wind speed category for *unstable* lands, all soil groups, and presents the calculations of log_{10} means and log_{10} standard deviations for each wind speed range for which data are available.

Section B tabulates 10 meter erosion velocities from Section 2, cumulative flux data from Section 3 and the cumulative spike data from Section 4 by wind speed category for *stable* lands, all soil groups, and presents the calculations of log_{10} means and log_{10} standard deviations for each wind speed range for which data are available.

Section C presents summaries of the geometric mean emission factors and spike masses for unstable and stable lands, classified by wind speed range and major soil group. Data presented in these tables and figures constitute the emission factors that were employed to compute 1999 Valley-wide PM-10 emission estimates from vacant lands. Data from Section 5 were used in the computation of these results.

Section D presents statistical summaries of the aerodynamic roughness heights and PM-10 initiation velocities for each major soil group.

Section E presents comprehensive data the 1998-1999 wind tunnel emission factors from stabilized (treated with dust suppressant), surfaces. Data for each dust suppressant and test phase (Phase I, August - December, 1998; and Phase II, February - June, 1999), are presented. Computations of the weighted average fluxes (from 5 and 10 minute runs) and statistical summaries of the emission factors, averaged over all dust suppressants and classified by wind speed range, are presented. Plots of emission factor data are presented, some of which are plotted to the same scale as for stable and unstable lands, so that the relative magnitudes of the emission factors can be visually compared for different stability classifications.

Section 1 - Wind Tunnel Description, Field Methods and Uncertainty Analyses

1-A. Site selection (Table 1 and Figure 1-1)

Wind tunnel sites for the 1995 study were selected to provide uniform coverage in the urban core of Las Vegas. The approximate distribution of sites across the Valley is shown relative to major cross streets in Figure 1-1. The 1998-1999 dust suppressant study was conducted in the long-abandoned sludge beds at the City of Las Vegas Water Pollution Control Facility, located at the east end of Vegas Valley Drive next to Las Vegas Wash.

In the 1995 study, major cross streets and compass direction relative to the nearest intersection (i.e. North-east corner of Mountain Vista and Gold Dust) were recorded, and uncorrected global positioning system (GPS) coordinates were determined by a Magellan hand-held Global Positioning System unit, generally accurate to +/- 2 seconds of latitude and longitude (+/- 3 hundredths of a minute, approximately +/- 50 meters). When near the intersections of major north-south and east-west streets, the compass location relative to the intersection (example, north-east corner of Sahara and Walnut for WT006) was usually recorded. To determine major soil group, site GPS coordinates were manually mapped onto an enlarged version of the major soil group map from the 1985 Speck and McKay US Agricultural Research Service soil survey.

Photographs of the site were taken, including an area photograph (nearest landmarks) and a close-up of the soil surface under the working section of the tunnel. Two digit numeric site codes were assigned to each tested location. A total of 85 sites were tested in a threemonth period from May 31, 1995 until September 1, 1995.

1-B. Methods for determination of site stability

In 1995, site stability was determined by presence or absence of intact crust, by proportion of vegetation present (using an average from two 50-foot transects, counting vegetation every foot), and by evidence of human disturbance (tire tracks, trash, litter, evidence of recent earthmoving). Additionally, a surface soil sample was collected and subjected to conventional ASTM sieve analysis. Vegetation coverage and ASTM soil particle size distributions are available, but are not provided in this report.

Since the 1995 study was completed, new procedures for determination of stability of vacant lands have been proposed and adopted by ordinances or rules in Maricopa County, Arizona and by Clark County, Nevada. In late 1999, Clark County requested that the stability of the 1995 wind tunnel sites be re-evaluated using 1995 close up (generally from a distance of 2 feet) site photographs (most of which showed sheltering elements, rocks and cobbles) and the proposed Maricopa/Clark County rules. The 1995 site photos were evaluated by the 1999 UNLV field crew (which had been performing field stability classifications under the proposed Maricopa County rules) as to whether or not they would pass ball drop and threshold friction velocity (TFV) tests. The result of this re-estimation using the Maricopa/Clark County rules converted three 1995 "unstable" site designations to "stable," at Wind tunnel sites, WT058, WT059 and WT060. All other 1995 site stability designations were unchanged.

Table 1 contains 1995 test date, site cross street and compass corner locations, GPS coordinates, stability classification and major soil group information, sorted by Wind tunnel site designation. Stability designations are shown as a 1 (unstable) or 0 (stable) in Table 1.

1-C. Spatial and temporal variability field studies (Table 1A)

Several locations tested early in the summer season were visited later in the season in an attempt to determine temporal and small scale spatial variability. During the late season visit, the wind tunnel was operated at a location adjacent to the early season site visit (excavation of earth for sealing the tunnel flaps to the soil surface made it difficult to reposition the tunnel at exactly the same location. Because the tunnel was not run in exactly the same location, the late-season site revisits were given a new two-digit designation. One unstable site, WT031, was tested over a 6-day period at eight different locations (WT031-A through WT031-H) on a small lot on the east site of the Las Vegas Valley in an attempt to determine small-scale spatial variability. A concordance of early and late season site visits is shown in Table 1A.

1-D. Description of Wind Tunnel (Figures 1-2 and 1-3)

The UNLV-CCHD wind tunnel used in the 1995 field study and the 1998-99 dust suppressant study is a modification of the draw-through design developed by Duane Ono at Great Basin Unified Air Pollution Control District, Bishop, California. Modifications in the UNLV tunnel include a 6 inch diameter working section instead of 4 inch section, addition of a TSI Dust-Trak^(r) PM-10 monitor in the riser section, use of heavy gauge plastic flaps and soil or draft tubes to seal the tunnel to the surface instead of sharp metal runners, and use of a rear air bypass to control averaging flow instead of a venturi and an electronic motor speed controller. Major components of the tunnel are shown schematically in Figure 1-2. Wind tunnel processes are diagrammed in Figure 1-3.

The working section of the tunnel is 6.00 inches wide x 6.00 inches high x 60 inches long. Additionally, not shown in the figure, there is a 60-inch long flow-conditioning section installed ahead of the working section of tunnel with a honeycomb flow diffuser at the front end, giving incoming air 10 diameters to develop a turbulent profile before it passes into the tunnel working section.

The working section is sealed to the soil surface with 3-inch wide heavy gauge flexible PVC flaps. In 1995, the flaps were sealed to the surface with soil and rock excavated from the site being tested. In 1998-1999, to allow measurement of much lower fluxes on stabilized surfaces treated with dust suppressants, the flaps were sealed to the surface with closed cell foam and 2-inch diameter 6 foot long cloth draft tubes filled with sand.

A Dwyer 90-degree pitot tube (labeled "profiling pitot tube" in Figure 1-2) is located in the working section, attached to a height adjusting system that allows the tube to be set at a logarithmic series of elevations above the soil surface. The pitot tube is connected in

parallel to two Magnehelic(r) pressure gauges, one reading from 0.00 to 0.20 inches of water, and the other reading from 0.00 to 1.00 inches of water.

As air passes through the working section of the tunnel, it entrains particulates from the soil surface (Figure 1-3), and the particulates are conveyed in the air flow through the working section to the divergence section. The expansion section contains a front bypass air inlet, located on the top of the section. The size of the front bypass opening is controlled by a sliding damper. The purpose of this front bypass air inlet is to control the volumetric flow rate of air in the working section, and thus control the erosion velocity. Air flow rate in the working section is lowest when the damper is wide open, and highest when the damper is closed. In field work the damper is adjusted to give a specified centerline pitot tube reading for a particular erosion run.

The expansion section is connected to a rectangular metallic box called the elutriation chamber (Figure 1-2). As air flow enters the elutriation chamber and slows down, the chamber captures particles with diameters greater than 70 microns physical diameter (Figure 1-3). A door at the back of the elutriation chamber allows it to be cleaned after each wind tunnel run.

Air flow leaves the elutriation chamber through a 6-inch diameter PVC pipe section, called the riser (Figure 1-2). Air velocity in the riser is generally sufficient to suspend soil particles with physical diameters less than 70 microns (Figure 1-3).

As air proceeds up the riser, a small sample is pulled off by the TSI Dust-Trak PM-10 monitor. The Dust-Trak(r) measures PM-10 concentrations in the range 0.000 to 19.99 mg/m³. The instrument uses attenuation of a laser diode light beam to estimate PM-10 concentration. Air is drawn into the unit at a fixed rate of 1.70 liters per minute by a positive displacement pump, and passes through a built-in cyclonic separator (50% aerodynamic cut size, 10 microns) before proceeding into a chamber where the suspended particle stream breaks the light beam. The units are factory calibrated against a standard dust suspension. The manufacturer (TSI) recommends annual servicing and recalibration. UNLV's first unit (Unit A) was acquired in the Spring of 1995, and was used during the summer 1995 study with its original factory calibration. Prior to the start of the 1998-1999 wind tunnel study, Unit A was shipped to the factory for calibration. A second TSI Dust-Trak^(r), Unit B, acquired in 1999, was employed at the end of the 1998-1999 study, when Unit A was returned to the factory for calibration.

After passing the TSI sampling port, particle-laden air in the riser makes a 90-degree turn and passes by the sampling orifice of the cyclone, filter, venturi and fan system (Figure 1-2). The venturi, fan motor and filter housing, from a standard General Metal Works PM-10 atmospheric sampler, is equipped with a venturi orifice designed to choke air flow through sonic velocity, and thus make air flow independent of temperature and pressure. Design flow rate is 40 cubic feet per minute. The cyclone was built by UNLV to have a 50% physical cut size of 6.5 microns for approximately spherical particulates of density approximately 2.5 grams/cm³. This physical diameter corresponds to an aerodynamic diameter of 10 microns for particles of density 1.0 gram/cm³ for particles settling in Stokesian flow. After passing through the cyclone, air is drawn through a glass fiber filter for particle trapping before exhaust to the atmosphere (Figure 1-3).

After passing the cyclone orifice, the remaining flow proceeds through a reducing coupling into a 4-inch diameter flexible tube, and then enters the velocity box (Figure 1-2). The velocity box is a 6-foot long 4-inch diameter PVC pipe that is used for measurement of the total volumetric flow rate in the wind tunnel. A Dwyer averaging pitot tube is located 40 inches (10 diameters) downstream of the entrance to the velocity box. Pressure drop across this pitot tube is measured by a Dwyer solid-state pressure logger with a range of 0.00-9.99 inches of water, a resolution of 0.01 inches of water, and an accuracy of 2%.

After passing the averaging pitot tube, flow enters the rear-bypass air inlet (Figures 1-2 and 1-3). The rear by-pass air inlet is adjusted to give a specified pressure drop in the averaging pitot tube, so that the flow sampling at the TSI and the cyclone is nearly isokinetic. Typical pressure drop values were usually in the range of 3.00-3.30 inches of water.

After leaving the rear bypass, air is drawn into the fan section and exhausted from the system (Figures 1-2 and 1-3). The Dayton 10 5/8" diameter fan is powered by a 1 horsepower Dayton electric motor, turning approximately 3000 rpm. At field sites, the electric motor is powered by a 5 horsepower portable AC generator.

1-E. Wind Tunnel Air flow balance (Figures 1-4 and 1-5)

Intakes and withdrawals of air in the wind tunnel are graphically depicted in Figure 1-4. Air is drawn into the wind tunnel at front end of the working section and at the front bypass air inlet. The combined flow proceeds through the riser, where a small subsample is withdrawn at 1.7 liters/minute by the TSI Dust-Trak^(r). A 40 cfm sample is then withdrawn from riser by the sampling tube connected to the cyclone, filter, venturi and filter fan subsystem. The flow then proceeds down the flexible PVC tube to the velocity box, where it is measured by the averaging pitot tube, and then blended with air from the rear bypass air inlet before entering the fan and being exhausted from the system.

Assuming negligible air density changes in the tunnel, air mass flow rate balances can be converted into air volumetric flow rate balances. The corresponding volumetric air flow balance equations are shown in Figure 1-5. The key result is equation g, which shows that the sum of two unknown flow rates, Qdil + Qwork, is equal to the sum of two known or measured flows, Qavg +Qcyc,

(Equation 1-5g) Qdil + Qwork = Qavg + Qcyc

where:

Qdil	is the flow rate entering at the front bypass air inlet
Qwork	is the flow rate entering through the working section of the tunnel
Qavg	is the flow rate measured by the averaging pitot tube in the velocity box
Qcyc	is the known flow rate passing through the venturi in the cyclone-filter set.

This relationship will be used in section F to estimate flux rates from the soil surface.

1-F. Wind tunnel PM-10 mass balance and PM-10 flux calculation

Intakes and withdrawals of particulates are graphically depicted in Figure 1-6. The corresponding mass balance equations are shown in Figure 1-7. The term "mdot" in Figures 1-6 and 1-7 corresponds to a particulate mass flow rate in the system.

The purpose of Figure 1-7 is to lead the reader through the mathematics of the derivation of the PM-10 mass flow rate (shown as mdotsoil) from the soil surface in the tunnel working section. PM-10 mass balances and air flow balances from Figure 1-5 are used to develop am equation that estimates PM-10 flux rate from the soil surface in terms of known or measured quantities.

(Equation 1-2	7p) fluxsoil = [(Qavg + Qcyc) x (Crise - Cbak)] / [Tunnel floor area]
where:	
fluxsoil	is mass rate per unit area of PM-10 eroded from the soil surface in units of mass/area/time, generally milligrams per square meter per minute and tons per acre per hour.
Qavg	is the flow rate measured by the averaging pitot tube in the velocity box
Qcyc	is the known flow rate passing through the venturi in the cyclone-filter set
Crise	is the PM-10 concentration measured by the TSI Dust-Trak ^(r) in the tunnel riser
Cbak	is the PM-10 atmospheric background concentration, typically assumed to be 20 or 30 μ g/m ³
Tunnel floor	area is the exposed area under the working section of the tunnel, 2.5 ft^2

Figure 1-7, equation p shows the key relationship that is derived from the mass balance:

Measured, known or assumed quantities from each wind tunnel run are substituted into 1-7p to compute the wind tunnel flux. An example calculation of the flux is shown in Figure 1-8.

Fluxes computed using this methodology are tabulated in Section 2 of this report. These fluxes are not corrected for the initial "spike" of loose PM-10 that was recorded by the TSI Dust Trak^(r) in many of the wind tunnel field study runs.

Spike corrections are computed and explained in Section 3 of this report.

1-G. Wind Tunnel Test procedure - 1995 field study

The wind tunnel was transported disassembled in the back of a medium size (Dodge Dakota) pick-up truck, and assembled at each site. A flat area at least 15 feet long x 5 feet wide was needed for assembly of four rigidly-connected units, the tunnel flow conditioning section, tunnel working section, elutriation chamber, and support stand for the cyclone-filter combination. Other components, attached with flexible PVC, could be arranged in a variety of locations behind the rigidly connected units. Soil was excavated from locations outside of the tunnel working section with hand trowels and shovels and deposited in a 2-3 inch thick layer on the flexible plastic flaps to form a seal to the surface.

After assembly, the ambient barometric pressure, atmospheric temperature and relative humidity were recorded, and the pressure gauges were zeroed. The rear bypass air inlet was set to measure a pressure drop of 3.20 inches of water to give a riser section flow velocity that was nearly isokinetic with the flow velocities of the cyclone and TSI Dust-Trak(r) sampling ports.

The TSI Dust-Trak^(r) was turned on and set to measure instantaneous PM-10 concentration, with no logging of data to memory. The tunnel fans were turned on and the damper on the front bypass air inlet was closed until a "spike" of PM-10 exceeding 1 mg/m³ was observed on the TSI display. Damper position was fixed at this point, and the velocity profile over the soil surface was determined by the profiling pitot tube. The tunnel fans were then turned off and the front bypass air inlet was opened all the way.

Barometric pressure, air temperature, and profiling pitot pressure drop data were entered into a Quick-BASIC^(r) computer program on a laptop computer to determine the aerodynamic roughness and a corresponding set of pitot tube centerline pressure drops that would correspond to a range of three or four 10-meter erosion velocities.

For the first wind tunnel run, the TSI Dust-Trak(r) was then set to datalogging mode, the tunnel fans were turned on, and the bypass damper was closed until the indicated pressure drop from the pitot tube reached the first designated 10-meter erosion velocity. At this point, the Dust-Trak was set to begin recording one PM-10 concentration each second for 10 minutes.

The TSI display would blank at the end of the 10-minute period, and the tunnel fans were turned off. Dust captured in the elutriation chamber and cyclone was brushed into new, preweighed zip-lock plastic bags, and the glass fiber filter was changed. The tunnel was reassembled, and the sampling repeated in exactly the same location, at a higher indicated

wind speed. For the first 49 wind tunnel sites (WT001 through WT049), the goal was to conduct three sampling runs per location at progressively higher wind-speeds. For sites WT050 through WT078, this was changed to four runs per location. at the request of Clark County Health District.

Samples collected in the elutriation chamber were brushed into clean, plastic bags at the end of each run and returned to the laboratory for weighing. Weight changes were determined in a Sargent-Welch electronic analytical balance with resolution of +/- 0.1 milligram (mg). These data are available, and were reported in the UNLV M.S. thesis by Joe Alvin Haun, but are not reported in this study.

Samples collected in the cyclone were brushed into clean, plastic bags at the end of each run and returned to the laboratory for weighing. Weight changes were determined in a Sargent-Welch electronic analytical balance with resolution of +/- 0.1 milligram (mg). These data are available, and were reported in the UNLV M.S. thesis by Joe Alvin Haun, but are not reported in this study.

Glass fiber filters were pre-conditioned in a constant relative humidity chamber, weighed, sealed flat in large plastic ziplock bags, handled with latex gloves when installed and removed from the PM-10 filter mount in the field. After sampling, they were returned to the lab and reconditioned to the same relative humidity and temperature, and then reweighed. Filter weights were determined to +/- 0.1 milligram in a Sargent-Welch electronic balance. Experience in both the 1995 and 1998-99 wind tunnel studies showed that, unless an unusually high PM-10 concentration was eroded from the soil surface, 10 minute wind tunnel sampling runs were of insufficient duration to obtain a detectable weight change on the glass fiber filters. For this reason, TSI Dust-Trak PM-10 data are the only values reported in this study. PM-10 filter data are available, and were reported in the UNLV M.S. thesis by Joe Alvin Haun.

1-H. Variations in wind tunnel field test methods and flux calculations for the 1998-1999 dust suppressant study

Changes in sampling techniques developed for the 1998-1999 dust suppressant study are described in this subsection.

1) Surface seals

In the 1995 study, soil was excavated from locations outside of the tunnel working section with hand trowels and shovels and deposited in a 2-3 inch thick layer on the flexible plastic flaps to form a seal to the surface. In the 1998-1999 study, this approach was not found to work on the dust-suppressant-treated surfaces, as good surface seals could not be made with some of the crusted suppressant material, and cleaner sampling techniques were required. Instead, the tunnel flaps were placed on pad of flexible closed cell foam, and weighed down with 6-foot long, 3-inch diameter cloth tubes filled with sand.

2) Determination of aerodynamic roughness and velocity profile

During the 1995 study, PM-10 eroded in during first three minutes of low-velocity operation of the tunnel, was assumed to be small relative to the reservoir on the surface, and other than observing the first exceedance over 1 mg/m3, was not recorded by the TSI Dust-Trak^(r). During the 1998-1999 dust suppressant study, it became apparent that the PM-10 reservoir on dust suppressant-treated surfaces was very limited, and the first three minutes operation during velocity profile determination was significantly depleting the reservoir. A revised sampling procedure was developed as a result of this realization.

The TSI Dust-Trak^(r) was set to record PM-10 concentrations for a fixed period of five (5) minutes during the velocity profile determination. The tunnel was set to operate at a fixed centerline profiling pitot pressure drop during this initial 5-minute run. During this initial run, the velocity profile was measured and the fans and TSI were shut off exactly 5 minutes after they were started.

The aerodynamic roughness and corresponding wind velocity at 10 meters were then calculated with the Quick-BASIC^(r) computer program. Then tunnel fans were then restarted, and tunnel was operated at exactly the same damper opening as in the 5 minute run, while the TSI logged PM-10 for 10 minutes. At the conclusion of the 10 minute run, the elutriation chamber and cyclone contents were swept into plastic bags, and the glass fiber filter was changed.

Fluxes obtained during the 1998-1999 sampling were then computed as a weighted average of the 5 minute (weight 1/3)and 10 minute (weight 2/3) runs.

3) Flux (emission factor) calculations

As discussed above, the wind tunnel was operated only one time in each place during the 1998-1999 dust suppressant testing study. In contrast, during the 1995 wind tunnel field study, the wind tunnel was operated for three or four times in each place at progressively increasing wind speeds, and cumulative fluxes were computed (see Sections 3 and 4 of this report for the computational methodology.

As a result, the flux values from Stabilized surfaces treated with dust suppressants are not cumulative, and the 1995 flux values from Unstable and Stable surfaces are reported as cumulative results.

There should be little effect of this difference in data processing at lower wind speeds (< 30 mph), where most of the 1995 fluxes are reported for run 1, and are, not cumulative.

4) Site sampling protocols

Since the dust suppressant-treated surfaces generally had very low reservoirs of PM-10, it was found after a few tests that multiple runs in one location at progressively higher wind speeds did not produce additional PM-10. The first 15 minutes of operation (5 minute run + 10 minute run) significantly depleted the treated surfaces of PM-10. As result, the

tunnel was operated for only one run (a "run" being the 5 minute velocity profile determination followed by the 10 minute erosion experiment) in each location. The tunnel was moved to a different location for a subsequent run.

In Phase I, to assess effects of weathering, the tunnel was moved from one treated surfaced to another after one run on each surface. With a set of 10 treatments, and a productivity of 2-3 runs per day, each surface was revisited generally about once every 7-10 days. See Section E, Tables E12 through E.22 for Phase I sampling dates for each suppressant.

In Phase II, to assess spatial variability of PM-10 on each surface as the surface weathered, the tunnel was moved from one location to another on the same treated surface until a set of about 5 runs had been completed, and then moved to the next surface. Each treated surface was visited about three times during Phase II. See Section E, Tables E.2 through E.11, for Phase II sampling dates for each suppressant.

Wind tunnel testing during each 1998-1999 dust suppressant testing Phase took place over a four to five month period, with many visits to the same locations. During the 1995 field study, wind tunnel testing took place over a three month period, with very few visits to the same locations.

1999 uust suppress		1000 1000 - 1
Feature Surface seals	1995 field study Site soil directly on flaps	1998-1999 study open cell foam under flaps sand filled tubes over flaps
Aero roughness Velocity profile	3 minute, not logged by TSI	5 minutes, logged by TSI used in flux calculations
PM-10 spike velocity	damper closed until spike observed	too little PM-10 not performed
Repeat runs in one place	Yes, three or four	No, only one per test location
Emission factors	Computed directly from 10 minute runs	Weighted average of 5 and 10 minute runs
Emission factors	Cumulative at higher wind speeds, accounting for earlier runs in same place. Many runs > 30 mph	Not cumulative Few runs > 30 mph

The following table summarizes differences between the 1995 field study and the 1998-1999 dust suppressant study

1-I. Uncertainty analysis of wind tunnel measurements

A complete uncertainty analysis of wind tunnel measurements was developed for this report. Uncertainties for derived quantities were determined as the square root of the sum of the squares of uncertainties of directly measured values, using the following formula.

For a quantity, X, that is a function of parameters A, B, C ...

I.a)
$$wX = \{ [(\delta X/\delta A)wA]^2 + [(\delta X/\delta B)wB)]^2 + [(\delta X/\delta C)wC)]^2 + ... \}^{1/2}$$

where $\delta X/\delta A$, $\delta X/\delta B$, $\delta X/\delta C$, etc. represent the partial derivatives of X with respect to A, B, C, etc. respectively, and

wA, wB, wC, etc., represent the experimental uncertainties of the parameters A, B, C, etc. respectively

The partial derivatives represent the rate of change of the quantity X with respect to each parameter, and can be thought of as "weights" on the uncertainties.

For example, for computation of gas density, $\rho = [P MW] / [R T]$

I.b) $w\rho = \{ [(\delta \rho / \delta P) w P]^2 + [(\delta \rho / \delta M W) w M W)]^2 + [(\delta \rho / \delta R) w R)]^2 + [(\delta \rho / \delta T) w T)]^2 \}^{1/2}$

When the partial derivatives are symbolically determined and substituted into the equation, and the result is divided by the formula for ρ , the following symbolic relationship for relative uncertainty is obtained:

l.c.
$$w\rho/\rho = \{ [wP/P]^2 + [wMW/MW]^2 + [-wR/R]^2 + [-wT/T)]^2 \}^{1/2}$$

Values of P, MW, R and T, and values of the uncertainties wP, wMW, wR, and wT, may be substituted into equation I.c to compute the relative uncertainty of gas density. For example, for

$\mathbf{P} = 0.920 \text{ atm}$	uncertainty, $wP = 0.00167$ atm
(from $P = 27.53$ inches Hg,	uncertainty, wP = 0.05 in Hg)
MW = 28.9 g/gmole	uncertainty, wMW = 0.2 g/gmole
$R = 0.08206 \text{ atm-L/mole/}^{\circ}K$	uncertainty, wR = 0.0001 atm-L/mole/°K
T = 294 °K	uncertainty, $wT = 0.55 ^{\circ}\text{K}$
$w\rho/\rho = \{ [0.00167 / .920]^2 + [0.2 / 2]^2 $	$28.9]^{2} + [0001/.08206]^{2} + [55/294)]^{2} \}^{1/2}$ = 7.50x10 ⁻³

giving wp =
$$7.50 \times 10^{-3} \times 1.100 \text{ kg/m}^3 = 0.008 \text{ kg/m}^3$$
.

and

In this study, uncertainties were computed for gas density, centerline velocity, 10-meter velocity, averaging pitot velocity and tunnel volumetric flow rate, and PM-10 flux.

Tables 1B through 1E present uncertainty results for quantities used in determination of the PM-10 emission factors

Table	Parameter	Estimated relati	ive uncertainty
		Worst case	Best case
1B	air density	no data	0.75%
1 C	centerline velocity	13%	4%
1C	10 meter velocity	17%	12%
ID	tunnel volumetric flow rate	6%	4%
1 E	tunnel floor area	no data	0.50%
lE	others	see Table 1E and	Tables 1F and 1G
1F	PM-10 flux - low riser flow uncert	71%	7%
1 G	PM-10 flux - high riser flow uncert	71%	10%
Tables 1F an	d 1G present uncertainty results for PN	A-10 emission fact	ors (flux in

Tables 1F and 1G present uncertainty results for PM-10 emission factors (flux in ton/acre/hr) for several combinations of riser flow uncertainty and PM-10 concentration.

When the relative uncertainty of riser flow rate is low (4%), and with PM-10 background uncertainty of $10 \ \mu g/m^3$, the following emission factor uncertainty results are obtained. Corresponding combinations displayed in Table 1F are underlined. * = not physically real.

CONTO	sponang comonacions alsp		it div did of the of	not phy	0.0
Riser	PM-10 concentration	40	200	1000	
Riser	PM-10 uncertainty	μg/m ³	μg/m³	µ g/m ³	
2	μg/m ³	<u>51%</u>	7%	4%	
6	µg/m³	<u>58%</u>	8%	4%	
10	μg/m ³	<u>71%</u>	<u>9%</u>	4%	
20	μg/m ³	112%	<u>13%</u>	5%	
50	μg/m³	*	<u>29%</u>	<u>7%</u>	
100	μg/m ³	*	56%	<u>11%</u>	
200	μg/m ³	*	*	<u>21%</u>	

When the relative uncertainty of riser flow rate is high (9%), with a PM-10 background uncertainty of 10 μ g/m³, the following emission factor uncertainty results are obtained. Corresponding combinations displayed in Table 1G are <u>underlined</u>. * = not physically real.

Riser	PM-10 concentration	40	200	1000
Riser	PM-10 uncertainty	μg/m³	μ g /m³	µg∕m³
2	μg/m³	<u>52%</u>	11%	9%
6	µg/m ³	<u>59%</u>	11%	9%
10	μg/m ³	<u>71%</u>	<u>12%</u>	9%
20	µg/m ³	112%	<u>15%</u>	9%
50	μg/m ³	*	<u>30%</u>	<u>10%</u>
100	$\mu g/m^3$	*	57%	<u>14%</u>
200	μg/m ³	*	*	<u>22%</u>

The above tables show that flux (emission factor) relative uncertainties tend to plateau at the riser flow rate uncertainty for conditions where the relative uncertainty in PM-10 riser concentration is small (low fluctuations and a high average PM-10 concentration). This corresponds to physical conditions where the stochastic fluctuations in the TSI-measured PM-10 signal are small.

Relative uncertainties in flux estimates are highest for conditions where the riser PM-10 concentration is low and uncertainties in riser and background PM-10 concentrations are high. Physically, this corresponds to occasions when the tunnel is measuring fluxes from stabilized surfaces that generate low amounts of PM-10.

1-J. 1995 repeatability study

In late 1995, a repeatability study was conducted with the portable wind tunnel in an effort to estimate the inherent variability of its particulate measurements.

About cubic feet of soil were collected in five 5-gallon plastic buckets from WT078, an unstable site with one of the highest measured PM-10 production rates, located on the east side of the Las Vegas Valley near the intersection of Mountain Vista and Gold Dust. Bucket contents were thoroughly mixed prior to application.

A one-inch thick, one foot wide, eight foot long, uniform layer of soil was placed on a level concrete pad in the utility yard of the UNLV College of Engineering, a site partially shielded from the wind by a 10-foot high wall. The top surface was smoothed with flat cardboard, and then indented with about 1/8" of surface relief with corrugated cardboard. The cardboard was removed and the portable wind tunnel was placed on the soil, with the flaps sealed to the surface with more soil from the site. The wind tunnel was operated at a fixed flow rate, and PM-10 filter, cyclone, saltation, and TSI measurements were obtained.

Eight controlled runs were conducted at the same tunnel flow rate, with each run conducted on a new batch of soil. (Soil from the previous run was swept up before new soil was applied to the concrete pad). Results of these eight controlled are shown in Table 1H.

The average TSI PM-10 mass collected was 46.2 ug, with a standard deviation of 21.0 ug, giving a coefficient of variation (CV) of 21.0/46.2 = 0.45, or 45%, for an average riser concentration of 2.72 mg/m³ (2,720 µg/m³). This CV was lower than for the other collected size fractions, but higher than the theoretical uncertainty estimated for single measurements of high riser PM-10 concentrations in Tables 1F and 1G.

1-K. Flow calculation error in original 1995 data

Average wind tunnel flows for each 1995 run were re-computed in late 1999 for this study. This occurred because a flow calculation error was uncovered in the summer of 1998 during a refit of the portable wind tunnel for the 1998-1999 dust suppressant study. The source of the calculation error was incorrect interpretation by UNLV of units for a pitot tube constant in a manufacturer-supplied guidance document for use of the averaging pitot tube. The averaging pitot tube was used to calculate average volumetric flow through the wind tunnel, and average volumetric flow is used to calculate PM-10 fluxes from the tested soil surfaces.

Use of corrected units for the pitot tube constant reduced computed flow rates by a factor of about 3, and correspondingly reduced computed fluxes by a factor of about 3. Upon discovery of the calculation error, all 1995 fluxes were recalculated in late 1999 and early 2000.

Only the correct, recalculated average tunnel flows and recalculated fluxes are reported in this document. Flux rates reported by UNLV to Clark County in 1996, and used in the Clark County 1996 PM-10 SIP, were too high by a factor of about two to three. Data in this report reflect the use of the correct, recalculated average flow rate, and emission factors in this report supersede emission factors reported by UNLV in 1996.

				E	
5/31/95 WT001 Schuster & Frias	MN	115011.54	36°00.22'	0	e S
00	ŝ	114°59.86'	36°02.08'	0	9
6/01/95 WT003 Boulder Highway & Snap	SW	114°59.94'	36°03.15'	0	8
WT004 Lake Mead & McDa	MN	115°07.30'	36°11.92'	0	8
6/08/95 WT005 Mitchell & Walnut	MN	115°05.62'	36°14.69'	1	8
6/08/95 WT006 Sahara & Walnut	Ä	115*05.22'	36°08.72'	0	œ
6/09/95 WT007 Craig & Losee	MN	115°06.93'	36°14.42'	0	S
6/09/95 WT008 Craig & Lamb	SW	115°04.90'	36°14.39'	0	8
6/09/95 WT009 Craig & Lamont	SE	115°03.96'	36°14.28'	0	8
6/19/95 WT010 Hollywood & Nellis Air Force Base	Ш	115"01.46	36°13.49'	0	8
6/19/95 WT011 Alto & Mt Hood	UR N	115°02.16'	36°12.64'	0	9
6/20/95 WT012 Alto & Lamb		115*05.87'	36°12.69'	0	2
6/20/95 WT013 Christy & Carey	ШN	115°03.27'	36°12.32'	1	8
		115°06.28'	36°12.59'	0	8
6/21/95 WT015 Carey & Revere	MN	115°09.11'	36°12.27'	0	7
6/21/95 WT016 Harmon & Cameron	SW	115°12.15'	36°16.48'	~	2
6/22/95 WT017 Alexander & 5th		115°08.00'	3613.96	0	2
6/22/95 WT018 Clayton & Alexander		115°10.19'	36°13.92'	-	8
6/26/95 WT019 Valley View & Alexander	NE	115°11.81'	36°13.89'	-	2
6/26/95 WT020 Simmons & Carey	MN	115°10.74'	36°12.20'	1	ø
	SE	115°13.77'	36°13.86'	-	7
6/27/95 WT022 Decatur & Rancho	SW	115°12.17	36°12.39'	***	7
6/27/95 WT023 Smoke Ranch & Steinke (US-95)		115°14.36'	36°12.15'	0	2
6/28/95 W/T024 Martin Luther King & Alta	MN	115*09.75	36°10.01'	•	6
6/28/95 WT025 Charleston & Torrey Pines	MS	115°14.20'	36°09.49'	0	2
6/29/95 WT026 Lake Mead Drive & Gibson	л Л	115°01.75'	36°01.84'	0	9
6/29/95 WT027 Gibson & Boulder Highway		115°01.45'	36°04.56'	0	9
6/30/95 WT028 Racetrack & Powertine				0	9
6/30/95 WT029 Equestrian & Foothills		114"55.50"	36°00.74'	1	m
6/30/95 WT030 Racetrack & Drake		115°56.91'	36°02.39'	0	9

Table 1 - 1995 Wind tunnel field study sampling locations

1 36°10.92' 1 8	. 36°10.92' 1	36°10.92' 1	1' 36°10.92' 1 8	l' 36°10.98' 1 8	36°10.89' 1	36°10.89' 1	36°10.92' 1 8	36°10.01' 1	36*10.69' 0		36*00.72' 0	36*00.98' 0	36*02.58' 0	36*02.47' 0	36°03.01' 0	36'04.22' 0	36°04.29' 0	. 36°04.51' 1	36°04.49' 0	r' 36°01.49' 0 2	36*03.03' 0	. 36°04.23' 0	1 36°12.68' 0 2	36'12.31' 0 2	36°12.33' 1	1 2R015 271 D B	2 11-1 22
NW 115°03.31	NW 115*03.31	NW 115°03.31	NW 115°03.31'	NW 115°03.31'	NW 115°03.30'	NW 115°03.30'	NW 115°03.28'	115°11.49	NW 115°02.03'	NW 115º14.72	115917.84	SW 115°15.95'					NE 115º17.90'	-		-		SE 115°07.54'	NW 115°09.23'	NW 115°09.22'	NW 115°09.23'	NW 115°10.74'	
7/05/95 WT031-A Washington & Bledsoe	7/05/95 WT031-B Washington & Bledsoe	7/05/95 WT031-C Washington & Bledsoe	7/06/95 WT031-D Washington & Bledsoe	7/07/95 WT031-E Washington & Bledsoe	7/10/95 WT031-F Washington & Bledsoe	7/10/95 WT031-G Washington & Bledsoe	7/10/95 WT031-H Washington & Bledsoe	7/06/95 WT032 Alta & Valley View	7/07/95 VVT033 Holiywood & Bonanza		7/12/95 WT035 Gary & Seeliger											7/20/95 WT047 Spencer & Sunset	7/24/95 WT048 Carey & Revere			7/25/95 WT051 Carey & Simmons	

Table 1 - 1995 Wind tunnel field study sampling locations

			tanan karangan daran daran dar Atanan karan daran dar dan	國政制(4) (1) (4) 推進主義(1) (4)	
7/27/95 WT054 Cameron & Harmon	SE	115°12.16'	36°06.48'	1	2
7/27/95 WT055 Cameron & Harmon	SE	115 12.17	36°06.51'	1	2
		115°07.31	36°11.90'		8
7/28/95 WT057 Post Office		115*07.34	36°11.89'	-	80
	MN	115°09.77	36°10.00'	0	6
WT059 Martin Luther King	MN	115*09.75	36°10.01'	0	6
8/01/95 WT060 Martin Luther King & Atta	MN	115*09.70'	36°10.01'	0	9
	R	115*06.87	36°14.44'	1	5
8/02/95 WT062 Craig & Losee	¥	115*06.90'	36°14.38'	0	5
	ШZ	115*06.93'	36°14.40'	0	5
8/04/95 WT064 Hollywood & Bonanza	MN	115°02.01'	36°10.66'	0	5
ļ	MN	115°01.98'	36°10.71'	0	5
8/03/95 WT066 Racetrack & Powerline		114"57.01'	36°01.33'	0	Q
8/03/95 WT067 Racetrack & Powerline		114°56.99'	36°10.33'	0	Ð
8/08/95 WT068 Sahara & Summerlin	MN	115°19.66'	36°08.65'	0	2
8/08/95 WT069 Charleston & Rampart	MN	115°19.88'	36°09.84'	0	5
8/09/95 WT070 Hualapai & Anasazi	SW	115°19.65'	36°10.47'	0	S
8/14/95 WT071 Summerlin dirt road		115°20.03'	36°10.18'	-	Ś
8/14/95 WT072 Paradise & Sur Este	В	115°08.38'	36°03.18'	0	7
8/15/95 WT073 Las Vegas Bivd & Warm Springs	MN	115°10.46	36°03.48'	0	7
8/18/95 WT074 Las Vegas Blvd & Blue Diamond	SW	115°10.46'	36°03.48'	0	7
8/18/95 WT075 Patrick & Sandhill	SE			0	6
8/30/95 WT076 Jimmy Durante & Stephanie	SE			0	6
8/30/95 WT077 Mtn Vista & Gold Dust	SE			0	6
9/01/95 WT078 Mtn Vista & Gold Dust	ß			1	6

Table 1 - 1995 Wind tunnel field study sampling locations

Table 1A - Index of repeat s				
Cross street location	Early season (before 7/	date & site #	Late season ((after 7/1	
Cameron & Harmon	6/21/95	WT016	7/27/95	WT054
	0,21,70		7/27/95	WT055
Carey & Revere	6/21/95	WT015	7/24/95	WT048
			7/24/95	WT049
Carey & Simmons - unstable	6/26/95	WT020	7/26/95	WT053
Carey & Simmons - stable			7/25/95	WT051
-			7/25/95	WT052
Craig & Losee	6/9/95	WT007	8/2/95	WT061
-			8/2/95	WT062
			8/2/95	WT063
Hollywood & Bonanza	7/7/95	WT033	8/4/95	WT064
			8/3/95	WT065
Martin Luther King & Alta	6/28/95	WT024	7/31/95	WT058
			8/1/95	WT059
			8/1/95	WT060
North Las Vegas Post Office	ļ.		7/28/95	WT 056
			7/28/95	WT057
Racetrack & Powerline	6/30/95	WT028	8/3/95	WT066
			8/3/95	WT067
Washington & Bledsoe	7/5/95	WT-031A		
	7/5/95	WT-031B		
	7/5/95	WT-031C		
	7/6/95	WT-031D		
	7/7/95	WT-031E		
	7/10/95	WT-031F		
	7/10/95	WT-031G		
	7/10/95	WT-031H		

Scenario	•	2	Cause of Uncertainty
	Low temp, Low press	High temp, high press	
Formula	p = mN = P MW / RT	$\rho = m/V = P MW / RT$	
P inches Ha	27.53	28.43	
WP inches Ha	0.05		0.05 uncertainty in last digit of display
	1.82E-03	1.76E-03	
T	530.0	570.0	
wT °R	1.0		1.0 resolution of thermometer
WT/T	1.89E-03	1.75E-03	
<u>WW</u> a/amole	28.9	28.7	
wMW a/amole	0.2		0.2 variation in composition with relative humidity changes
WW/WW	6.92E-03	6.97E-03	
R atm-L/amole-K	0.08206	0.08206	
WR	0.0001		0.0001 +/- 1 in last digit
wR/R	1.22E-03	1.22E-03	
Sum of squares	5.62E-05	5.62E-05	
RMS uncertainty. wp / p	7.50E-03	7.50E-03	
RMS %	0.750%	0.750%	
density o ko/m	1 100	1 049	
RMS wo /2 +/-ko/m ³			

Table 1B - Uncertainty analysis of air density calculations

Scenario	ŀ	2	Source of uncertainty
Instrument	profiling pitot tube	profiling pitot tube	
measurement	centerline AP	centerline ΔP	
Conditions	Best case	Worst case	
Formula	V = k[2ΔP/p] ¹²	V = K[2ΔP/p] ^{1/2}	
Typical data			
ΔP, inches H20	0.181.U	0.100	
+/- uncert in meter reading	600 70	07070	
cause	meter readability	cross wind fluch	see "cause" in each column
wAP inches H20 (= 2x fluct)	0.010	0.040	
WAP / AP	6.25E-02	2.60E-01	
o ko/meter?	1.06	1.06	
wo ka/meter	0.008	0.008	0.008 from density calculation, Table 1B
Wp / p	7.55E-03	7.66E-03	
k (pitot constant)	1.000	1.000	
XX XX	0.020		0.020 variation in k for +/- 5° alignment error
wtuk	0.020	0.020	
Sum of aquartes 2(wX/X) ²	1.39E-03	1.60E-02	
$WVN = \Gamma \Sigma(WXN)^{-1/2}$	3.73E-02	1.27E-01	and the second
RMS uncert w/V tn %	3.7%		12.7% V = centerline velocity at $z^1 = 7.6$ cm
			ideleden fo service d'unit
Scenario for U10	1	7	Units & source of uncertainty
Computed centerline velocity	9.2		9.2 m/sec
Uncertainty, wV	0.3		1.2 m/sec
Computed centerline velocity	20.6		20.6 mph
Uncertainty, wV	0.8		2.6 mph
semula servin in inhineas 70	0.100	0.100 cm	CB
uncertainty wzo	0.010		0.010 cm, estimate from regression
centerline heidht z1	7.60		5
uncertainty. wz1	0.10		0.10 cm, wobble in pitot adjustment
wind measurement height, z2	1000	1000 cm	CJ
	50 U	1 77E M	
(KIMS TERM TO ZO)'' Z			
(RMS term wrt z1)^2	9.Z3E-06		
(RMS term wrt V, wVV)^2	1.39E-03	1.	
RMS uncert w(U10)/(U10) %	11.9%	1	
extrapolated U(10)	43.7		43.7 mph
	6.3		7 4 moh

Table 1C - Uncertainty analysis of centerline and 10 meter velocities

	-	7	Source of uncertainty
Instrument	averaging pitot tube	averaging pitot tube	
measurement	AP at 4 locations	AP at 4 locations	
Conditions	Best case	Worst case	
Formula	$V = k[2\Delta P/p]^{12}$	$V = K[2\Delta P/p]^{1/2}$	
Typical data			
ΔP, inches H20	3.200	3.200	
+/- uncert in meter reading	0.050		
cause	fan pulsation	cross winds	see "cause" in each column
<u>w∆P inches H20 (= 2x fluct)</u>	0.100	0.300	
WΔP / ΔP	3.13E-02	9.38E-02	
p kg/meter ³	1.06	1.06	
wp kg/meter ³	0.008		0.008 from density calculation Table 1B
wp/p	7.55E-03	7.5	
k (pitot constant)	0.600	0.600	
wk	0.020		0.020 variation in k for ±/- 5° alignment error
wk/k	3.33E-02	3.3	
Sum of squares $\Sigma(wX/X)^2$	1.37E-03	3.32E-03	
$wVN = [\Sigma(wXX)^2]^{1/2}$	3.70E-02	5.76E-02	
RMS uncert w/// in %	3.7%	5.8%	
Computed velocity m/sec	24.7	747	
RMS uncertainty ± m/sec	0.9	1.4	
Computed velocity mph	55.2	55.2	
RMS uncertainty 🛨 mph	2.0	3.2	
Pipe cross section	round	round	
Volumetric flow conversion	$Q = V (\pi diam^2 / 4)$	$Q = V (\pi \operatorname{diam}^2 / 4)$	
pipe diam inches	4.00	4.00	
pipe diam feet	0.333	0.333	
pipe area ft	0.087	0.087	
	4856	4858	
approximate wall correction	1.00	1.00	
flow rate ft'/ min	424	424	
flow rate uncertainty ft ³ / min	16	24	

~
Ĕ
Ę
₹
Ě
ų
Ē
Ē
Ť
5
ğ
Ē
5
2
£.
8
ē
÷
ŧ.
-
2
2
ĩ
Ž
÷.
ĕ
Ë
£
Ê
ž.
<u>3</u>
đ.
Ā
Ĕ
-
Ō
6
ă
Ē

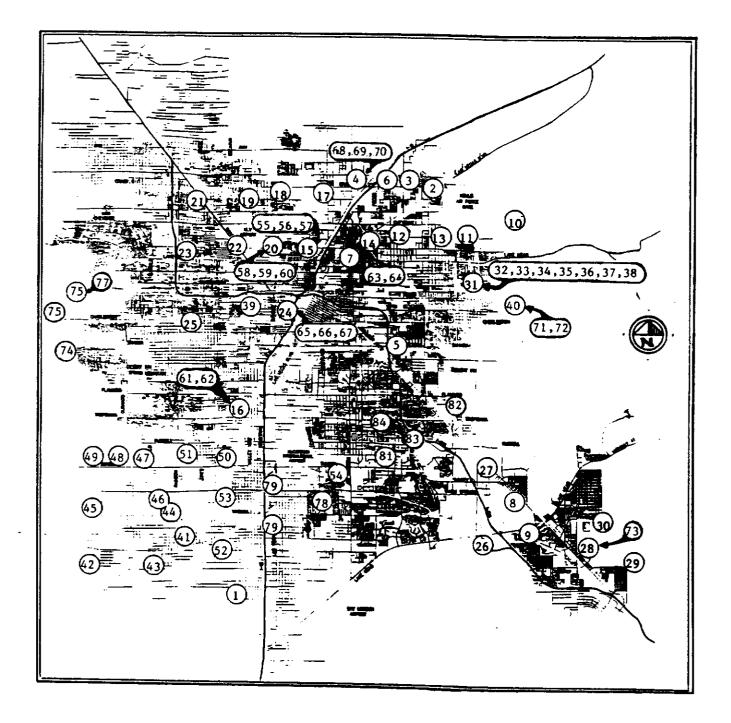
Table 1E - Sources of Uncertainty in flux calculation

Variable	Typical value	Source of uncertainty
[
Working section length, inches	8	
wLength inches	3.13E-02	3.13E-02 measurement uncertainty, tape
wLength/Length	5.21E-04	
	9	
_		
wWidth inches	3.13E-02	3.13E-02 measurement uncertainty, tape
wWidth/Width	5.21E-03	
Area ft ²	2.500	
wArea ft ²	1.31E-02	1.31E-02 RMS error computed from length, width uncertainties
WArea/Area	5.23E-03	
Qavg cfm	424	
WQavg / Qavg	5.76E-02	5.76E-02 Max fluctuation in meter reading from cross winds, fan oscillations
wQavg cfm	24	24 Computed from pitot probe fluctuations (see Table 1D)
Qcyc cfm	40.0	
wQcyc cfm	1.0	
wQavg/(Qavg+Qcyc)	5.26E-02	
wQcyc/(Qavg+Qcyc)	2.16E-03	
Crise ua/m3	1000	
	20	
Crise - Cbak ug/m3	980	
wCrise ug/m3	200	200 If large, RMS error of fluctuating TSI signal. If small, uncertainty in
wCrise/(Crise-Cbak)	2.04E-01	2.04E-01 individual TSI measument. See flux calculation scenarios
	-	
wCbak ug/m3	6	10 Uncertainty in assumed clean air background PM-10
wCbak/(Crise-Cbak)	1.02E-02	

Scenario	-	2	n	+	9	9	~	8	3
riser concentration	high	high	high	medium	medium	medium	low	low	low
riser concentr uncert	high	lium	low	high	medium	low	high	peu	low
Tvoical site	unstable lands	unstable lands		stable lands	stable lands		stabilized lands	stabilized lands	stabilized lands
Surface condition							torn up		not torn up
Riser flow uncertainty	low	low	low	MO	low	low	low	low	low
Data									
Area ft^2	2.500	2.500	2.500	2.500	2.500	2.500			
wArea ft^2	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
wArea/Area	5.23E-03	5.23E-03	5.23E-03	5.23E-03	5.23E-03	5.23E-03	5.23E-03	3 5.23E-03	5.23E-03
Qavo cfm	468	468	468	468	468	468	468	468	
-	40	40	40	40	40		40		
Qavg+Qcyc cfm	508	508	508	508	508	508		508	508
					2				
wQavg cfm	21	21	21						
wQavg/(Qavg+Qcyc)	4.13E-02	4.13E-02	4.13E-02	2 4.13E-02	4.13E-02	4.13E-02	4.13E-02	2 4.13E-02	4.13E-02
4		+		+					
weeks cim									
WQcyc/(Qavg+Qcyc)	1.97E-03	1.97E-03	1.97E-03	3 1.9/E-03	1.8/E-03	1.8/E-03	1.8/E-03	1.8/E-03	CU-11/2/1
Crise ua/m3	1000	1000	1000	200	500	200	40	40	
	20	20	8	20	2	20	1 20	3 20	20
	980	8	86	180	180	180	20	20	
wCrise un/m3	200	100	25	50	8	10	10	0	~
wCrise/(Crise-Cbak)	2.046-01	1.02E-01	5.10E-02	2.78E	1.115	5.565-	5.00E-01	1 3.00E-01	1.00E-01
wChak unim3	10	10	10	10	10	10	10	10	10
wCbak/(Crise-Cbak)	1.02E-02	1.02E-	1.02E-02	5.56E-	5.56E-02	5.56E-02	5.00E-01	5.00E-01	5.00E-01
<u> </u>	4.35E-02	1.23E-02	4.45E-03	3 8.20E-02	1.72E-02	7.91E-03	5.02E-01	1 3.42E-01	2.62E-01
RMS uncert [Z(wX/X) ²]		1.11E-01	6.67E-02	2.86E-01	1.31E-01	8.90E-02	7.06	5.85	5.12E-01
RMS uncertainty %		11%	7%		13%	%6	71%	58%	51%
flux ton/acre/hr	1.63E-02	1.63E-02	1.63E-02	2 2.99E-03	2.99E-03	2.99E-03	1 3.32E-04	4 3.32E-04	3.32E-04
0	945 03				60 100	27E A3	D 3KE UA	1 045 04	1 75 04

Table 1F - Flux calculation - uncertainty analysis scenarios for low riser flow uncertainty and several riser concentrations

Scenario	1	2	9	4	G	9	7	8	8
riser concentration	high	high	high	medium	medium	medium	low	low	low
nser concentr uncert	high	medium	low	high	medium	low	high	med	low
Tvoical site	unstable lands	unstable lands		stable lands	stable lands		stabilized lands	stabilized lands	stabilized lands
Surface condition	· · · · · · · · · · · · · · · · · · ·		-				torn up		not tom up
Riser flow uncertainty	high	high	high	high	high	high	high	high	high
Data									
Area ft^2	2.500	2.500	2.500	2.500	2.500	2.500		2.500	
wArea ft^2	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
wArea/Area	5.23E-03	5.23E-03	5.23E-03	5.23E-03	5.23E-03	5.23E-03	5.23E-03	5.23E-03	5.23E-03
Qavo ofm	438	438	438	438	438	438	438	438	438
Ocve of m	40						40	40	40
Qavg+Qcyc cfm	478		Y	478	478	478	478	478	478
wOavg cfm	67	43	43	43	43	43	43	43	43
wQavg/(Qavg+Qcyc)	9.00E-02	-300.e	9.00E-	-300.6	-300.6	9.00E-	9.00E-	9.00E-	9.00E-02
				· · · · · · · · · · · · · · · · · · ·					
wQcyc cfm		4		-	-				-
w@cyc/(@avg+@cyc)	2.09E-03	2.09E-03	2.09E-03	2.09E-03	2.09E-03	2.09E-03	2.09E-03	2.09E-03	2.09E-03
Crise ua/m3	1000	1000	1000	200	200	200	40	40	40
	50						20	20	20
Crise - Cbak ug/m3	980	5	5	180	180				20
wCrise ug/m3	200	100	8	20	20	10	10	9	2
wCrise/(Crise-Cbak)	2.04E-01	1.02E-01	5.10E-02	2.78E-01	1.11E-01	5.56E-02	5.00E-01	3.00E-01	1.00E-01
wCbak ug/m3	10	10	10	10	10	10	10	10	10
wCbak/(Crise-Cbak)	1.02E-02	1.02E-02	1.02E-02	5.56E-02	5.56E-02	5.56E-02	5.00E-01	5.00E-01	5.00E-01
D(WX/X) ²	4,99E-02	1.86E-02	1.08E-02	8.84E-02	2.36E-02	1.43E-02	5.08E-01	3.48E-01	2.68E-01
RMS uncert [Z(wX/X) ²]	2.23E-01	1.37E-01	1.04E-01	2.97	1.53E-01	1.20E-01	7.13E-01	5.90	5.18E-01
RMS uncertainty %	22%	14%	10%	30%	15%	12%	71%	59%	52%
	102	1 52 00		0 E C C	60 11 0 C	2 040 02	2 4 DE 04	0 10E 04	3 175 04
		-		ŕ		k			
RMS uncer ton/acre/hr	34E-02	21E-02	.16E-02	84E-03	43E-03	.34E-03	2.23E-04	1.84E-04	1.62E-04


Table 1G - Flux calculation - uncertainty analysis scenarios high riser flow uncertainty and several riser concentrations

6 E	gm	68	mg	
mass	mass	mass	mass	
TSI PM-	Fitter	Cyclolic	Sanation	
		enclose	0-W-V-	

RUN #	Saltation	Cyclone	Fitter	TSI PM-10
anna a bhainn a' tha ann an	Mass	mass	mass	mass
	Бш	бш	đu	бш
D003	10086.3	124.5	171.9	0.05949
C001	4853.3	141.8	36.0	0.03835
C002	7366.1	353.0	72.0	0.05722
D004	6137.5	167.0	37.0	0.04166
E001	2201.3	198.0	108.4	
E002	10527.4	644.2	17.3	0.07374
E003 (y)	11822.9	871.1	123.4	0.06267
E004	594.6	94.4	111.9	0.01115
average	6698.7	324.3	84.7	0.0462
std. dev	4036.3	285.1	53.1	0.0210
coef. var.	%09	88%	63%	45%
average - 1sd, mg	2662.3	39.2	31.6	0.0252
average, mg	6698.7	324.3	84.7	0.0462
Ŧ	10735.0	609.3	137.9	0.0672
Flow rate, cfm	440	40	40	
Flow rate, liter/min				1.7
avg concentr mg/m ³	53.77	28.63	7.48	2.72

Table 1H - Results of experimental repeatability study

Figure 1-1 Approximate major cross street locations of 1995 Wind tunnel test sites Clark County, Nevada.

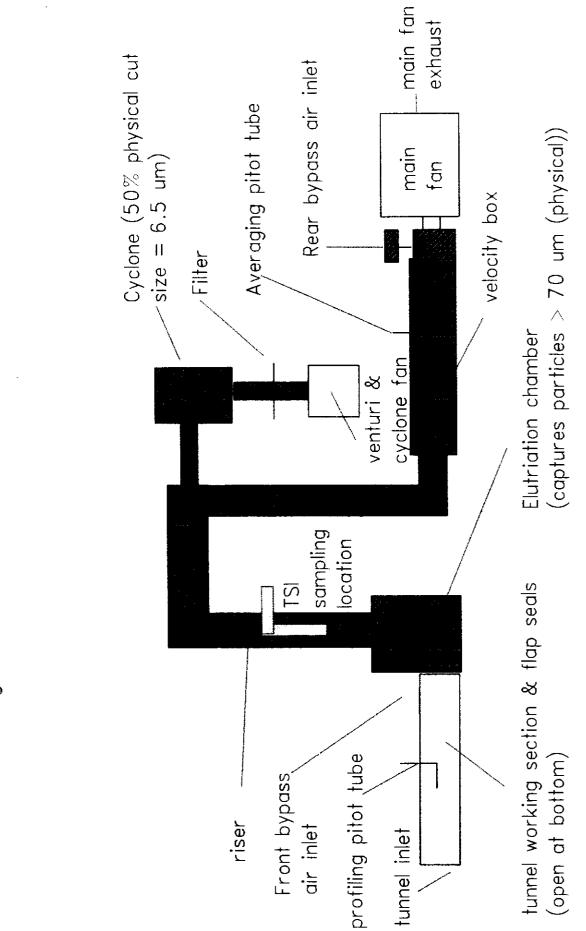
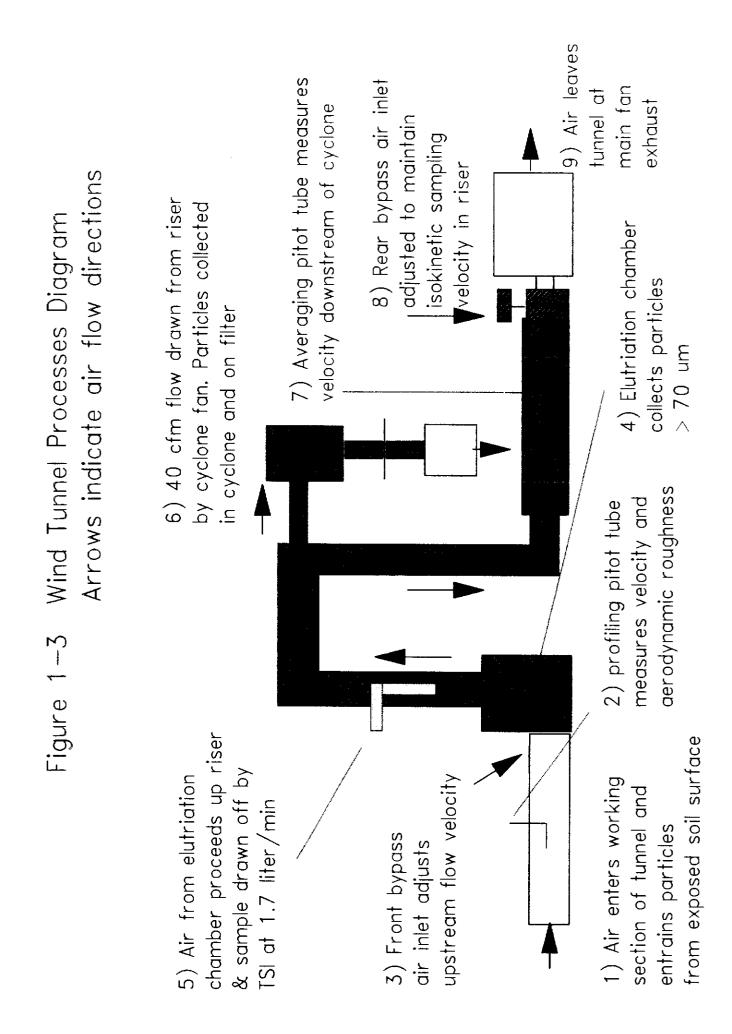



Figure 1–2 – Wind Tunnel Component Diagram

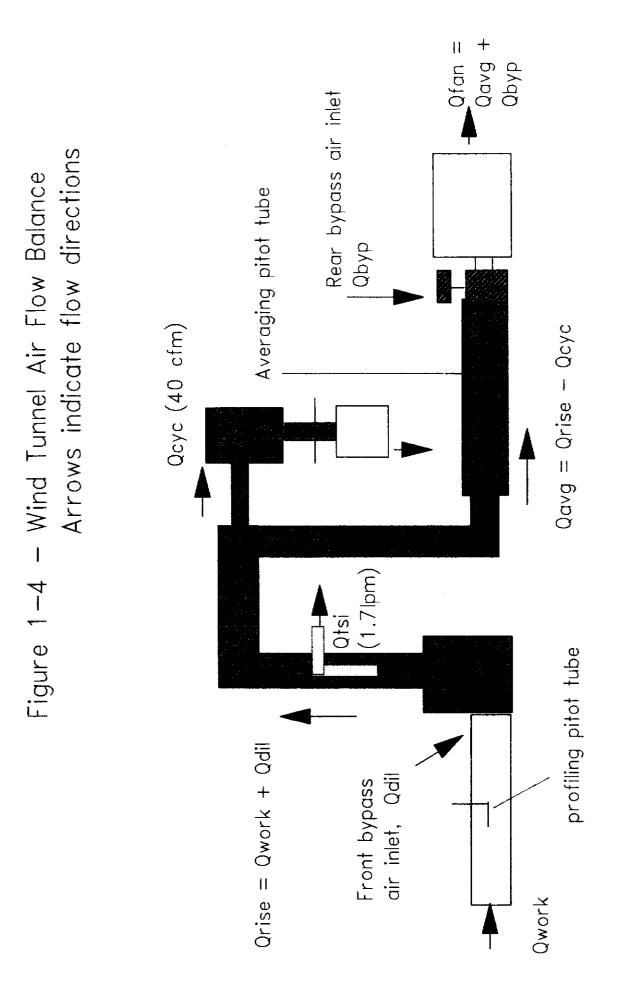


Figure 1-5 - Air flow balance equations

Assuming negligibe air density changes, then mass flow = volumetric flow

Primary equations: a) Qrise = Qdil + Qwork

b) Qavg = Qrise - Qcyc

c) Qfan = Qavg + Qbyp

Measured or known: Qavg measured directly

Qcyc known, 40 cfm

known, 1.7 liter/min - assumed negligible in gas flow balance Qtsi

Derived equations:

d) From b, Qrise = Qavg + Qcyc

e) From a, Qdil = Qrise - Qwork

f) Substitute d into e, obtain Qdil = Qavg + Qcyc - Qwork

g) Rearrange f to obtain, Qdil + Qwork = Qavg + Qcyc

With Qavg measured & Qcyc known, then Qdil + Qwork can be computed

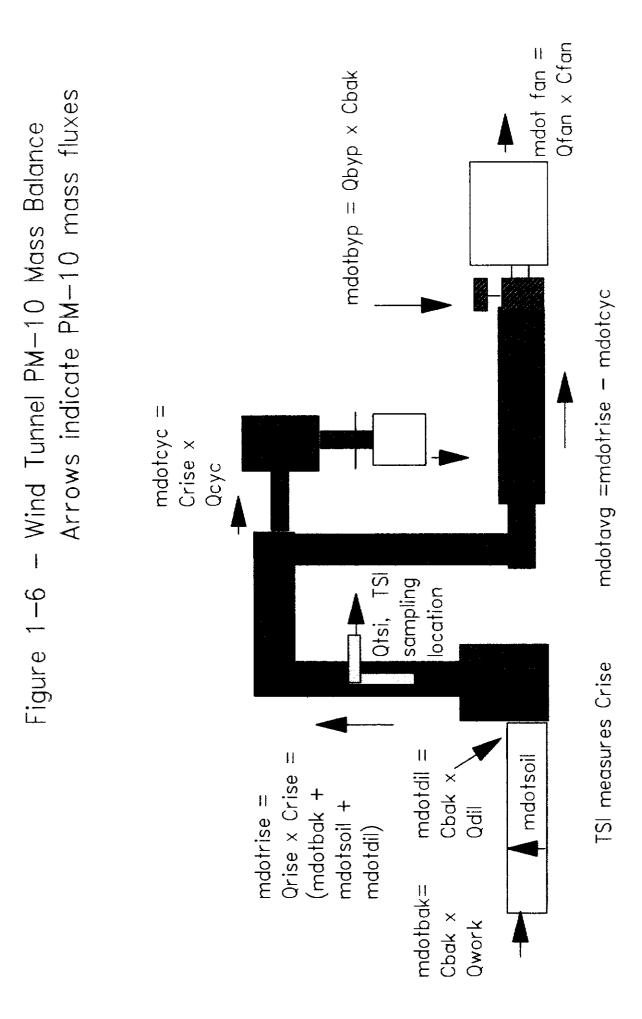


Figure 1-7 - Mass balance equations for PM10 (mdot = mass flow rate)

Primary equations: a) mdotfan = mdotbyp + mdotavg b) mdot avg = mdotrise - mdotcyc c) mdotrise = mdotdil + mdotsoil + mdotbak d) mdotbak = Qwork x Cbak e) mdotdil = Qdil x Cbak f) mdotrise = Qrise x Crise Measured, assumed or known: Crise Measured with TSI Dust Trak(r) Cbak Assumed 20 or 30 ug/m3, or measured with TSI Dust Trak(r) Tunnel floor area 0.5 ft wide x $5 \text{ ft long} = 2.5 \text{ ft}^2$ Derived equations: g) from c, mdotsoil = mdotrise - (mdotdil + mdotbak) h) from d&e, mdotdil + mdotbak = (Qdil+Qwork) x Cbak i) from Figure 1-5, equation g, Qdil+Qwork = Qavg + Qcyc j) substitute i into h and h into g to obtain mdotsoil = mdotrise - (Qavg+Qcyc) x Cbak k) by c, mdotrise = Qrise x Crise I) by Figure 1-5, equation d, Qrise = Qavg + Qcyc m) therefore, mdotrise = (Qavg + Qcyc) x Crise n) therefore, mdotsoil = (Qavg+Qcyc) x [Crise - Cbak] o) fluxsoil = mdotsoil / Tunnel floor area p) therefore, fluxsoil = [(Qavg+Qcyc)x(Crise-Cbak)] / [Tunnel floor area]

Figure 1-8 - Example calculations A. Raw Data Qavg 440 cfm Qcyc 40 cfm

432 ug/m3 (average value over 10 min sampling period) 2.5 ft2 20 ug/m3 **Tunnel floor** Cbak Crise

B. Conversion factors

0.305 m/ft 0.001 mg/ug 2.21E-06 lb/mg 0.0005 ton/lb 4047 m2/acre 60 min/hr

7.91E+04 ug-ft/m3/min 2.41E+04 ug/m2/min 2.41E+01 mg/m2/min fluxsoil = [(440cfm+40cfm)x(432-20ug/m3)]/[2.5ft2] ug-ft/m3/min = II 7.91E+04 ug-ft/m3/min x 0.305 m/ft = 2.41E+04 ug/m2/min x 0.001 mg/ug C. Flux calculation using Figure 1-7, equation p fluxsoil = fluxsoil =

6.46E-03 ton/acre/hour 1.08E-04 ton/acre/min 2.66E-08 ton/m2/min 5.32E-05 lb/m2/min 4047 m2/acr = 60 min/hr =2E-06 lb/mg = 0.0005 ton/lb = 1.08E-04 ton/acre/min x 2.41E+01 mg/m2/min x 2.66E-08 ton/m2/min x 5.32E-05 lb/m2/min x D. Conversion to ton/acre/hr fluxsoil = fluxsoil = fluxsoil = fluxsoil =

6.46E-03 ton/acre/hour

fluxsoil =

Figure 1-9 Example velocity profile plot

WT001 - velocity profile - fitted line without data zo = 0.2876 cm - dotted lines are extrapolations

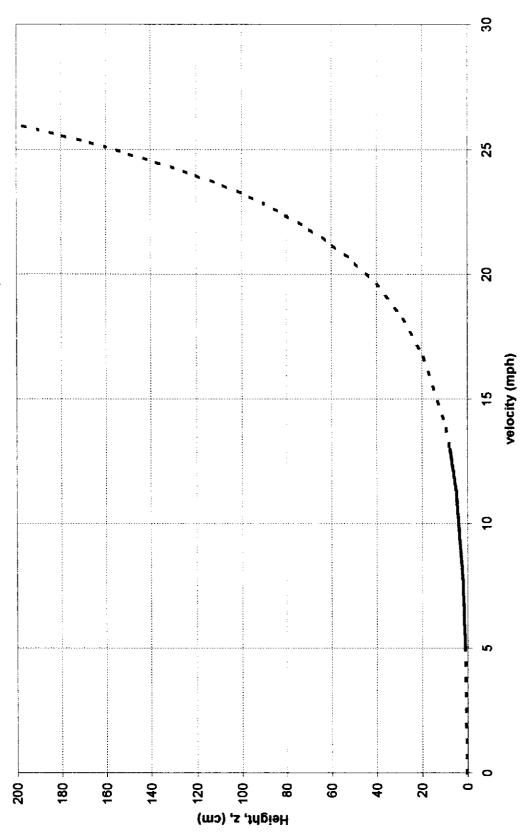
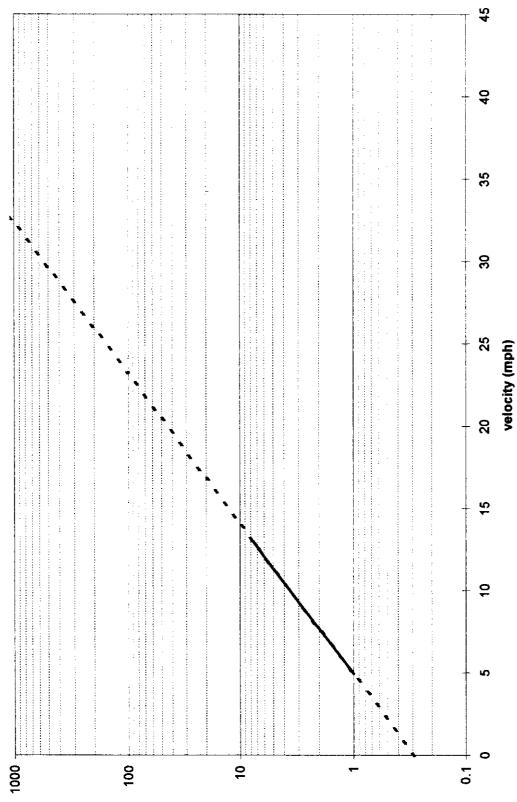



Figure 1-10 - Example velocity profile plot - log-transformed

WT001 logarithmic velocity profile - fitted line without data zo = 0.2876 cm - dotted lines are extrapolations

(mɔ) <mark>z ,tdpiə</mark>H

Section 2 - 1995 wind tunnel field data and uncorrected flux calculations.

Table 2 contains the following data, sorted by Wind tunnel site designation:

1) Date at which each site was sampled.

2) Wind tunnel site designation, listed as WT0xx, where xx is a two-digit site number.

3) Major soil group.

4) Wind tunnel run number at each site.

5) Duration of PM-10 logging event, in minutes. Each event was 600 seconds (10 minutes) long. Logging frequency and run duration were programmed into the Dust-Trak^(r). The Dust-Trak^(r) measured and recorded PM-10 concentrations every second. The TSI shut-off automatically after 600 seconds of monitoring.

6) Erosion velocity extrapolated to z = 10 meters above the surface (shown as U10).

7) Wind tunnel site stability classification, with 0 = Stable, and 1 = Unstable.

8) Average PM-10 concentration measured by the TSI Dust-Trak^(r) during the 10 minute sampling run.

9) Average volumetric flow rate measured through the averaging section of the tunnel (Qactual), measured with a Dwyer averaging pitot tube.

10) Individual, non spike-corrected flux in milligrams per square meter per minute $(mg)/(m^2-min)$. This uncorrected flux is computed using the following equation:

PM-10 flux = [(average measured PM-10 concentration) - (assumed background PM-10 concentration)] x [(average flow rate) + (cyclone flow rate) / (tunnel floor area)

A PM-10 background concentration of 0.030 mg/m³ (30 μ g/m³)was assumed for all runs.

For example, using data from WT002, run 1, with an average PM-10 concentration of 0.157 mg/m^3 , and a flow rate of $431.1 \text{ ft}^3/\text{min}$, the calculated result is:

11) Individual non spike-corrected flux, converted to ton/acre/hour. The conversion factor from mg/m²/min to ton/acre/hour is 2.206 x 10⁻⁶ lb/mg x 0.0005 ton/lb x 4047 m²/acre x 60 min/hour = 2.68 x 10⁻⁴ (ton/acre/hr) / (mg/m²/min). For WT002, run 1, this results in: 7.30 (mg/m²/min) x 2.68x10⁻⁴ (ton/acre/hr)/(mg/m²/min) = 1.95×10^{-3} ton/acre/hour.

Table 2 - 1995 Wind tunnel field data and calculated raw (not spike-corrected, not cumulative) fluxes

Sheet 1 of 7

		2						Indiv namapline corr	Flux (ton/acre/hr) Indiv nonapike corr
5/31/95 WT00		1	10	29.0	0	0.063	439.0	1.93E+00	5.16E-04
5/31/95 WT001	1 3	2	10	45.8	0	0.971	439.0	5.50E+01	1.47E-02
5/31/95 WT001		e	10	52.9	0	0.668	439.0	3.73E+01	9.98E-03
6/01/95 WT002		1	10	22.3	0	0.157	431.1	7.30E+00	1.96E-03
6/01/95 WT002		2	10	27.7	0	0.499	431.1	2.70E+01	7.22E-03
6/01/95 WT002		ო	10	28.9	0	0.215	431.1	1.06E+01	2.85E-03
6/01/95 WT003		-	10	43.3	0	0,187	439.0	9.17E+00	2.46E-03
6/01/95 WT003	9	2	10	50.0	0	0.772	439.0	4.346+01	1.16E-02
6/01/95 WT003		e	10	51.3	0	0.641	439.0	3.57E+01	9.56E-03
6/07/95 WT004		1	10	37.5	0	0.139	416.8	6.07E+00	1.63E-03
6/07/95 WT004	4	2	10	44.7	0	0.058	416.8	1.56E+00	4.18E-04
6/07/95 WT004		3	10	46.6	0	0.076	416.8	2.56E+00	6.86E-04
6/06/95 WT005		1	10	22.9	F	0.182	408.9	8.32E+00	2.23E-03
6/08/95 WT005	 	2	10	28.1		0.131	408.9	5.53E+00	1.48E-03
6/08/95 WT006		1	10	31.8	0	1.777	418.4	9.77E+01	2.62E-02
6/08/95 WT006		2	10	37.6	0	2.058	418.4	1.13E+02	3.04E-02
6/08/95 WT006		e	10	36.9	0	1.662	418.4	9.13E+01	2.44E-02
6/09/95 WT007		1	10	34.5	0	0.071	416.8	2.29E+00	6.12E-04
6/09/95 WT007		2	10	46.9	0	0.637	416.8	3.38E+01	9.06E-03
6/09/95 WT007		e	10	49.9	0	0.292	416.8	1.46E+01	3.91E-03
6/09/95 WT008		-	5	29.7	0	0.018	427.9	00.00E+00	00E+00
		2	10	35.0	0	0.055	427.9	1.43E+00	3.82E-04
6/09/95 WT008		3	10	39.6	0	0.163	427.9	7.59E+00	2.03E-03
6/09/95 WT009	8	-	10	38.0	0	0.183	433.4	8.84E+00	2.37E-03
		2	10	42.3	0	0.470	433.4	2.54E+01	6.80E-03
6/09/95 WT009		3	10	47.8	0	0.213	433.4	1.06E+01	2 B3E-03
	0 8	1	10	18.4	0	0.314	426.3	1.62E+01	4.33E-03
		2	10	24.5	0	1.544	426.3	8.61E+01	2.31E-02
		3	10	35.7	0	0.585	426.3	3.16E+01	8.45E-03
6/19/95 WT011	 	•	10	25.9	0	2.868	435.0	1.64E+02	4.40E-02
6/19/95 WT011		2	10	33.6	٥	12.617	435.0	7.29E+02	1.95E-01
6/20/95 WT012		-	10	35.4	0	0.512	427.1	2.75E+01	7.35E-03
6/20/95 WT012		2	10	41.5	0	0.883	427.1	4.86E+01	1.30E-02
6/20/95 WT012		ო	9	49.0	0	0.809	427.1	4.44E+01	1.19E-02
6/20/95 WT013		1	10	36.7	-	2.269	435.0	1.30E+02	3.47E-02
Ĺ		7	10	48.7		4.189	436.0	2.41E+02	6.45E-02
6/20/95 WT013		ო	10	54.8		3.788	435.0	2.18E+02	5.83E-02
		-	10	37.4	0	0:907	423.2	4.96E+01	1.33E-02
		2	10	40.6	0	0.672	423.2	3.63E+01	9.71E-03
	4 8	e	10	45.8	0	1.338	423.2	7.39E+01	1.98E-02
6/21/95 WT015		-	10	37.9	0	0.362	429.5	1.90E+01	5 09F-03

Sheet 2 of 7

fluxes
umulative)
J, not c
corrected
(not spike
ted raw
calcula
and cal
d data
el fiel
1 tunn
5 Wine
- 1995
Ň
Table :

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 10 10	45.5 53.1	0		1000	1.77E+01	4.74E-03
	×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N @ F N @ F N @ F	200	40.0 53.1	S	0000		1.//E+U1	4./4E-U3
	<u> </u>	<u> </u>	<u>0</u>	53.1		0.339	C.274		
	•••••••••••••••••	- 9 6 - 9 6 -	0		0	0.435	429.5	2.32E+01	6.21E-03
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~		35.3	1	1.093	435.8	6.17E+01	1.85E-02
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>ы - и и -</u>	10	39.8		0.334	435.8	1.76E+01	4.72E-03
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 0 6 -	10	44.2	-	1.489	435.8	8.47E+01	2 27E-02
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 0 1	10	37.3	0	1.330	431.1	7.47E+01	2.00E-02
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ю <del>г</del>	10	43.8	0	0.377	431.1	1.99E+01	5.34E-03
	8 8 8 8 8 8 8 8	-	10	50.5	0	0.724	431.1	3.99E+01	1.07E-02
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		10	34.9		1.343	435.0	7.61E+01	2.04E-02
	× × × × ×	7	10	44.9	٢	1.055	435.0	5.94E+01	1.59E-02
	0 0 0 0	e	101	51.2	-	1.500	435.0	8.52E+01	2.28E-02
	8 7 7	-	10	38.2	-	0.513	441.4	2.84E+01	7.59E-03
	8	2	10	41.7	-	0.717	441.4	4.03E+01	1.08E-02
	æ	e	10	46.3	-	0.645	441.4	3.61E+01	9.67E-03
	,	-	101	44.7	-	0.234	448.5	1.22E+01	3.25E-03
		2	10	45.1	-	0.267	448.5	1.41E+01	3.78E-03
	8	<b>ო</b>	10	55.7	-	0.294	448.5	1.57E+01	4.21E-03
	2	-	10	38.6		0.282	436.6	1.47E+01	3.92E-03
	2	2	10	41.7	•	0.374	436.6	2.00E+01	5.35E-03
	2	e	10	47.9	<b>.</b>	0.363	436.6	1.68E+01	5.03E-03
ļ	2	-	10	41.2	*	0.100	439.8	4.10E+00	1.10E-03
6/27/96 WT022	2	2	10	45.3	-	0.205	439.8	1.02E+01	2.74E-03
6/27/95 WT022	2	ო	10	53.5	-	0.141	439.8	6.50E+00	1.74E-03
6/27/95 WT023	5	-	10	41.3	0	1.555	447.7	9.07E+01	2.43E-02
6/27/95 WT023		2	10	48.6	0	1.938	447.7	1.14E+02	3.04E-02
6/27/95 WT023		ę	10	57.2	0	2.518	447.7	1.48E+02	3.96E-02
6/28/95 WT024	6	-	10	34.2	t	1.573	444.5	9.12E+01	2.44E-02
6/28/95 WT024	6	2	<b>₽</b>	42.5	Ŧ	2.652	444.5	1.55E+02	4.15E-02
6/28/95 WT024	6	3	10	47.5	1	1.613	444.5	9.36E+01	2.50E-02
	2	+	10	48.0	0	1.628	446.9	9.49E+01	2.54E-02
	2	7	10	53.2	0	1.866	446.9	1.09E+02	2.92E-02
6/28/95 WT025	5	e	10	61.7	0	1.382	446.9	8.03E+01	2.15E-02
6/29/95 WT026	9	+	10	33.5	0	0.332	431.9	1.74E+01	4.65E-03
	9	2	10	38.4	0	0.650	431.9	3.57E+01	9.55E-03
6/29/95 WT026	G	e	10	44.2	0	0.798	431.9	4.42E+01	1.18E-02
6/29/95 WT027	9	-	10	38.2	0	0.590	440.6	3.28E+01	8.79E-03
6/29/95 WT027	9	2	10	43.0	0	0.485	440.6	2.67E+01	7.14E-03
6/29/95 WT027	ဖ	m	10	49.1	0	1.282	440.6	7.346+01	1.97E-02
	6	1	10	28.3	0	0.942	432.7	5.26E+01	1.41E-02
	9	3	10	31.4	0	1.147	432.7	6.44E+01	1.72E-02
6/30/95 WT028	ဖ	ო	9	36.2	0	1.342	432.7	7.57E+01	2.03E-02

### Sheet 3 of 7

Table 2 - 1995 Wind tunnel field data and calculated raw (not spike-corrected, not cumulative) fluxes

	90	Major col	SZ	Dumbon	0HU	Chebiltie	AND TEL COND		Flux (mg/m^2-min)	Flux (ton/acra/hr)
		group		(min)	(hqh)	(y=1, n=0)	(mg/m^3)	(thraimin)	Indiv nonspike corr	indiv nonepike corr
6/30/95	WT029	en 1	ŧ.	10	30.8	÷	0.206	433.4	1.02E+01	2.72E-03
6/30/95	WT029	e	2	10	34.0	-	0.495	433.4	2.69E+01	7.19E-03
6/30/95	WT029	3	6	<b>1</b> 0	37.0	•	0.315	433.4	1.65E+01	4.41E-03
6/30/95	WT030	9	-	Ģ	42.2	0	0.546	441.4	3.03E+01	8.11E-03
6/30/95	WT030	9	7	5	50.1	0	0.500	441.4	2.76E+01	7.39E-03
	WT030	6	e 1	10	56.9	0	0.585	441 4	3.26E+01	8.73E-03
7/05/95 V	WT031-A	60	-	5	38.8	-	1.431	430.3	8.04E+01	2.15E-02
7/05/95 V	WT031-A	8	2	10		1	2.674	430.3	1.52E+02	4.06E-02
7/05/95 WT031-A	VT031-A	8	e	10	47.2		4.172	430.3	2.38E+02	6.36E-02
7/05/95 V	WT031-B	8		10	39.0	-	1,392	438.2	7.95E+01	2.13E-02
7/05/95 V	WT031-B	8	7	10	44.9		2.665	438.2	1.54E+02	4.12E-02
7/05/95 V	WT031-B	6	9	10	47.9	1	5.691	438.2	3.30E+02	8.84E-02
7/05/95 V	WT031-C	æ	-	10	41.5	-	3.599	443.7	2.11E+02	5.64E-02
7/05/95 WT031-C	VT031-C	8	2	5	47.7	L	3.940	443.7	2.31E+02	6.18E-02
7/05/95 WT031-C	VT031-C	Ø	e	10	50.4		5.689	443.7	3.34E+02	8.94E-02
7/06/95 V	WT031-D	æ	-	01	47.1	-	3.230	449.3	1.91E+02	5.11E-02
7/06/95 V	WT031-D	æ	7	10	54.2	*	1.538	449.3	9.00E+01	2.41E-02
	WT031-D	8	3	10	59.6	1	9.109	449.3	5.42E+02	1.45E-01
7/07/95 V	WT031-E	8	1	10	42.9	F	1.656	429.5	9.31E+01	2.49E-02
7/07/95 V	WT031-E	80	2	10	49.5	•	1.973	429.5	1.11E+02	2.98E-02
	WT031-E	00	ო	10	52.7	-	2.748	429.5	1.56E+02	4.17E-02
7/10/95 V	WT031-F	80	-	10	38.1	-	1.885	432.7	1.07E+02	2.86E-02
7/10/95 WT031-F	VT031-F	8	2	10	43.8	F	1.598	432.7	9.04E+01	2.42E-02
	WT031-F	æ	ო	10	48.2	-	2.280	432.7	1.30E+02	3.47E-02
7/10/95 V	WT031-G	8	٦	10	33.6	٢	1.032	438.2	5.85E+01	1.56E-02
7/10/95 WT031-G	VT031-G	8	2	10	38.6	٢	1.601	438.2	9.16E+01	2.45E-02
	WT031-G	8	3	10	42.5	1	1.672	438.2	9.58E+01	2.56E-02
	WT031-H	œ	•	10	36.2	*-	22.840	439.0	1.33E+03	3.57E-01
	WT031-H	ø	2	10	41.6	Į	19.953	439.0	1.16E+03	3.12E-01
7/10/95 V	WT031-H	8	e	10	44.9	-	48.987	439.0	2.86E+03	7.66E-01
	WT032	2	1	10	32.5	1	0.156	436.6	7.33E+00	1.96E-03
	WT032	2	2	10	36.4	•	0.115	436.6	4.94E+00	1.32E-03
	WT032	2	ო	5	39.3	***	0.125	436.6	5.52E+00	1.48E-03
	WT033	S	-	10	42.1	0	0.653	439.8	3.65E+01	9.76E-03
	WT033	ŝ	7	10	47.4	0	0.631	439.8	3.52E+01	9.42E-03
	WT033	S	e	\$	52.6	o	0.597	439.8	3.32E+01	8.88E-03
	WT034	7	-	10	41.6	0	1.245	432.7	7.01E+01	1.88E-02
	WT034	2	2	10	46.7	0	2.073	432.7	1.18E+02	3.15E-02
	WT034	2	3	10	52.4	0	4.244	432.7	2.43E+02	6.51E-02
- 	WT035	2	-	9	25.7	0	0.930	438.2	5.25E+01	1.41E-02
7/12/95	WT035	2	2	9	29.6	0	1.832	438.2	1.05E+02	2.81E-02

Sheet 4 of 7

fluxes
t cumulative)
d, n
pike-correctec
not s
id calculated raw (n
ita and
field da
tunnel fi
5 Wind
2 - 199
Table 2

diama -		(min)	(upp)	Ô=1.0=0		(tranh)	Indiv nonepilte con	indiv nonspike corr
2	3	10	34.3	0	5.148	438.2	2.99E+02	7.99E-02
2	-	10	42.7	0	0.946	430.3	5.26E+01	1.41E-02
2	5	0	49.8	0	0.978	430.3	5.44E+01	1.46E-02
2	e	10	56.1	0	4.645	430.3	2.65E+02	7.09E-02
0	-	10	45.0	0	0.878	438.2	4.95E+01	1.32E-02
2	~	10	50.9	0	0.894	438.2	5.04E+01	1.35E-02
2	e	10	55.8	0	2.571	438.2	1.48E+02	3.97E-02
2	-	10	33.2	0	0.171	429.5	8.08E+00	2.16E-03
7	2	10	37.7	0	0.184	429.5	8.82E+00	2.36E-03
2	e	10	41.5	0	0.248	429.5	1.25E+01	3.34E-03
2	•	10	43.8	0	0.508	435.0	2.77E+01	7.42E-03
0	7	10	49.6	0	0.442	435.0	2.396+01	6.39E-03
64	ę	10	56.2	0	0.744	435.0	4.14E+01	1.11E-02
5	1	1	37.1	0	0.908	439.8	5.14E+01	1.38E-02
2	2	10	40.6	0	3.172	439.8	1.84E+02	4.92E-02
2	e	10	44.8	0	1.336	439.8	7.64E+01	2.05E-02
7	-	10	42.2	0	0.872	430.3	4.83E+01	1.29E-02
2	2	10	48.6	0	0.770	430.3	4.25E+01	1.14E-02
7	e	10	53.6	0	0.849	430.3	4.70E+01	1.26E-02
2	***	10	39.3	0	0.285	438.2	1.49E+01	3.98E-03
7	7	10	54.7	0	0.610	438.2	3.38E+01	9.06E-03
2	e	10	60.7	0	0.460	438.2	2.51E+01	6.72E-03
7	-	10	34.2	٢	2.353	443.7	1.37E+02	3.67E-02
2	7	10	39.5	-	3.251	443.7	1.90E+02	5.09E-02
2	3	10	45.9	-	6.955	443.7	4.09E+02	1.09E-01
2	1	<b>°</b>	30.3	0	0.339	429.5	1.77E+01	4.74E-03
2	8	10	33.4	0	0.523	429.5	2.82E+01	7.56E-03
6	m	9	36.9 36.9	0	0.853	429.5	4.71E+01	1.26E-02
2	-	ç	40	0	1.535	439.8	8.81E+01	2.36E-02
5	2	10	50.5	0	0.933	439.8	5.29E+01	1.41E-02
8	ო	<b>0</b>	56.8	0	1.664	439.8	9.56E+01	2.56E-02
e	-	10	41.7	0	0.353	432.7	1.86E+01	4.99E-03
<b>ю</b>	2	<b>t</b>	48.1	o	0.633	432.7	3.48E+01	9.31E-03
e0	ო	ç	52.4	0	1.395	432.7	7.87E+01	2.11E-02
7	-	10	40.3	0	0.808	438.2	4.54E+01	1.22E-02
7	7	10	44.1	0	1.009	438.2	5.71E+01	1.53E-02
7	e	10	48.9	a	1.155	438.2	6.56E+01	1.76E-02
2	-	10	21.9	0	0.063	427.0	1.88E+00	5.03E-04
2	2	10	25.3	0	0,107	427.0	4.39E+00	1.17E-03
2	e	10	30.2	0	0.129	427.0	5.64E+00	1.51E-03
~	4	10		0				

# Table 2 - 1995 Wind tunnel field data and calculated raw (not spike-corrected, not cumulative) fluxes

Sheet 5 of 7

			uopand	010		NAC ISI DAY		Flux (mg/m^2-min)	Flux (ton/acre*hr)
3	ð			(ualu)					
		-	01	1.12		0.071	430.1	Z.38E+UU	
7/24/95 WT049	<b>49</b> 2	7	9	28.5		0.243	436.7	1.24E+01	3.32E-03
7/24/95 WT049	40	3	10	34.2	0	0.712	436.7	3.97E+01	1.06E-02
7/26/95 WT050		1	10	34.8	*	0.681	418.4	3.64E+01	9.75E-03
7/26/95 WT050		2	10	38.8	-	0.770	418.4	4.14E+01	1.11E-02
7/26/95 WT050		e	10	45.3	+	5.853	418.4	3.26E+02	8.72E-02
7/26/95 WT050		4	10	44.8	1	1.847	421.7	1.02E+02	2.74E-02
7/25/95 WT051	51 8	+	10	27.2	0	0.123	447.7	5.53E+00	1.48E-03
7/25/95 WT051		2	10	33.5	0	0.368	447.7	2.01E+01	5.38E-03
7/25/95 WT051		e	10	40.3	0	0.593	447.7	3.35E+01	8.97E-03
7/25/95 WT051		4	101	41.5	0	0.403	447.7	2.22E+01	5.94E-03
7/25/95 WT052		-	10	30.9	0	0.071	445.5	2.43E+00	6.50E-04
7/25/95 WT052		2	10	37.0	0	0.141	445.5	6.58E+00	1.76E-03
7/25/95 WT052	52 8	e	10	44.4	0	0.244	443.8	1.26E+01	3.38E-03
7/25/95 WT052	52 8	4	10	46.1	0	0.218	442.1	1.11E+01	2.96E-03
7/26/95 WT053	53 8	-	10	28.4	-	1.035	466.6	6.21E+01	1.66E-02
7/26/95 WT053		2	10	33.7	1	0.966	460.4	5.71E+01	1.53E-02
7/26/95 WT053		m	10	43.2	-	2.573	457.9	1.54E+02	4.14E-02
7/26/96 WT063		4	10	44.2	-	0,652	457.9	3.78E+01	1.01E-02
7/27/95 WT054		1	10	35.1	-	0.154	438.2	7.23E+00	1.94E-03
7/27/96 WT054		7	10	42.4	-	0.237	438.2	1.21E+01	3.23E-03
7/27/95 WT054		e	10	52.7	+	0.598	438.2	3.31E+01	8.87E-03
7/27/95 WT054		4	0	53.9	F	0.532	438.2	2.93E+01	7.84E-03
7/27/95 WT055		-	10	30.7	~	0.350	447.7	1.90E+01	5.10E-03
7/27/95 WT055		2	10	35.2	<b>4</b>	1.076	447.7	6.22E+01	1.67E-02
7/27/95 WT055		e	10	43.6	*-	1.360	447.7	7.91E+01	2.12E-02
7/27/95 WT055	56 2 2	4	10	44.7	1	0.542	447.7	3.05E+01	8.16E-03
7/28/95 WT056			10	27.9	-	0.153	439.0	7.19E+00	1.92E-03
7/28/95 WT056	8	2	10	33.9	1	0.305	439.0	1.61E+01	4.30E-03
7/28/95 WT056	80	m	10	41.1	-	0.283	439.0	1.48E+01	3.96E-03
7/28/95 WT056		4	10	43.1	-	0.348	439.0	1.86E+01	4.97E-03
7/28/95 WT057	57 8		10	30.2	-	0.063	443.7	1.95E+00	5.21E-04
7/28/95 WT057	57 8	2	10	33.5	1	0.163	443.7	7.85E+00	2.10E-03
7/28/95 WT057		9	10	36.9	-	0.107	443.7	4.54E+00	1.22E-03
7/28/95 WT057		4	10	43.1	t	0.244	443.7	1.26E+01	3.385-03
		-	10	32.8	0	0.713	439.0	3.99E+01	1.07E-02
7/31/95 WT058		2	10	41.3	0	0.866	439.0	4.89E+01	1.31E-02
		e	01	50.4	0	1.472	439.0	8.43E+01	2.26E-02
_		4	<del>0</del>	51.6	0	0.825	439.0	4.65E+01	1.24E-02
	9 9	1	10	34.7	0	0.150	435.8	6.97E+00	1.86E-03
8/01/95 WT059		2	10	40.8	0	0.210	435.8	1.04E+01	2.80E-03

### Sheet 6 of 7

Table 2 - 1995 Wind tunnel field data and calculated raw (not spike-corrected, not currulative) fluxes

		2		0.0	<b>UStratistic</b>	Ang TSI cono		Flux (mg/m^2-min)	Flux (ton/acre"hr)
			(TE)	(ucu)	(ta1, te0)	(June)	(mycu)	Indiv nonapike cort	indiv nonepike corr
		ო	10	52.4	0	0.212	435.8	1.06E+01	2.83E-03
8/01/95 WT	WT059 9	4	0	52.6	0	0.192	435.8	9.40E+00	2.52E-03
8/01/96 WT	WT060 9	-	10	25.4	0	0.318	441.4	1.69E+01	4.53E-03
8/01/95 WT	WT060 9	7	10	30.4	0	0.253	441.4	1.31E+01	3.51E-03
8/01/95 WT	WT060 9	m	10	37.9	0	0.519	441.4	2.87E+01	7.69E-03
8/01/95 WT	WT060 9	4	10	41.3	0	0.238	441.4	1.22E+01	3 27E-03
	WT061 5	-	10	37.8	1	0.736	437.4	4.11E-01	1.10E-02
8/02/95 WT	WT061 5	2	10	43.6		1.212	437.4	6.88E+01	1.84E-02
8/02/96 WT	WT061 5	e	10	53.4		2.012	437.4	1.15E+02	3.09E-02
8/02/95 WT	WT061 5	4	10	54.5	-	1.055	437.4	5.97E+01	1.60E-02
8/02/95 WT	WT062 5	-	0	39.9	0	0.438	446.9	2.42E+01	6.49E-03
8/02/95 WT	WT062 5	7	9	46.4	•	1.155	446.9	6.68E+01	1.79E-02
8/02/95 WT	WT062 5	e	10	59.2	0	2.788	446.9	1.64E+02	4.39E-02
8/02/95 WT	WT062 5	4	10	60.1	0	1.310	446.9	7.60E+01	2.04E-02
	WT063 5	-	10	37.8	0	0.246	449.3	1.29E+01	3.45E-03
8/02/95 WT	WT063 5	7	10	46.8	0	0.950	449.3	5.49E+01	1.47E-02
8/02/95 WT	WT063 5	e	10	57.6	0	0.424	449.3	2.35E+01	6.30E-03
	WT063 5	4	10	58.8	0	1.11	449.3	6.45E+01	1.73E-02
-		-	9	35.1	0	0.327	436.6	1.73E+01	4.62E-03
8/04/95 WT	WT064 5	2	10	43.9	0	0.415	436.6	2.24E+01	5.99E-03
		3	10	54.5	0	1.838	436.6	1.05E+02	2.81E-02
		4	10	54.8	0	0.654	436.6	3.63E+01	9.71E-03
		-	10	30.9	0	0.884	441.5	5.02E+01	1.34E-02
		2	10	36.8	0	0.819	441.5	4.64E+01	1.24E-02
	WT065 5	3	0	45.5	0	0:790	441.5	4.46E+01	1.20E-02
8/03/95 WT	WT065 5	4	10	47.6	0	1.445	441.5	8.31E+01	2.23E-02
		-	10	34.9	0	0.301	435.3	1.57E+01	4.21E-03
_		2	10	39.7	0	0.393	435.3	2.10E+01	5.63E-03
	G	ო	<b>6</b>	46.9	0	0.628	435.3	3.47E+01	9.28E-03
_	ø	4		50.5	0	0.406	435.3	2.18E+01	5.84E-03
		-	0	37.7	0	0.316	449.5	1.71E+01	4.57E-03
		2	10	46.9	0	0.177	449.5	8.78E+00	2.35E-03
		3	01	55.8	0	0.355	449.5	1.94E+01	5.20E-03
8/03/95 WT067	067 6	4	10	,	0				
		*	10	29.5	o	0.134	439.0	6.08E+00	1.63E-03
		2	10	33.1	0	0.394	439.0	2.13E+01	5.69E-03
		ო	10	41.4	0	0.453	439.0	2.47E+01	6.62E-03
		4	<b>6</b>	44.8	0	0.361	439.0	1.93E+01	5.18E-03
		-	10	28.7	0	0.435	442.1	2.38E+01	6.38E-03
	069 5	2	9	32.5	0	2.259	442.1	1.31E+02	3.51E-02
8/08/95 WT069		ო	9	41.9	0	7.572	442.1	4,44E+02	1.19E-01

Table 2 - 1995 Wind tunnel field data and calculated raw (not spike-corrected, not cumulative) fluxes

Sheet 7 of 7

			Ę					(umen	Indiv nonaplika corr	Indiv nonaplika corr
8/08/95	WT069	5	4	10	44.4	0	2.345	442.1	1.36E+02	3.65E-02
8/00/95	WT070	S	-	10	34.3	0	0.180	435.8	8.71E+00	2.33E-03
8/09/95	WT070	S	2	10	41.2	0	0.459	435.8	2.49E+01	6.67E-03
8/09/95	WT070	ŝ	m	10	50.1	0	1.413	435.8	B.03E+01	2.15E-02
8/00/95	WT070	v	4	10	51.4	0	0.603	435.8	3.33E+01	8.90E-03
8/14/95	WT071	J.	-	0	25.0	-	1.416	432.7	7.99E+01	2.14E-02
8/14/95	WT071	ъ	7	10	29.6	-	5.440	432.7	3.12E+02	8.35E-02
8/14/95	WT071	9	e	10	34.6	-	9.205	432.7	5.29E+02	1.42E-01
8/14/95	WT071	2	4	0	37.0		3.670	432.7	2.10E+02	5.62E-02
8/14/95	WT072	~	-	10	32.1	0	0.481	443.7	2.66E+01	7.13E-03
8/14/95	WT072	7	2	10	37.9	0	0.760	443.7	4.31E+01	1.15E-02
8/14/95	WT072	2	e	10	45.2	0	2.451	443.7	1.43E+02	3.82E-02
8/14/95	WT072	~	4	10	48.3	0	1.860	443.7	1.08E+02	2.89E-02
8/15/95	WT073	2	-	10	39.0	0	0.171	431.1	8.10E+00	2.17E-03
8/15/95	WT073	7	2	10	44,4	0	0.472	431.1	2.54E+01	6.80E-03
8/15/95	WT073	7	e	10	53.0	0	0.980	431.1	5.46E+01	1.46E-02
8/15/95	WT073	2	4	10	56.0	0	0.802	431.1	4.44E+01	1.19E-02
8/18/95	WT074	7	-	10	31.9	0	0,084	425.5	3.07E+00	8.21E-04
8/18/95	WT074	2	2	10	37.3	0	0.123	425.5	5.28E+00	1.41E-03
8/18/95	WT074	~	m	10	45.9	0	0.197	425.5	9.48E+00	2.54E-03
8/18/95	WT074	2	4	10	49.1	0	0.247	425.5	1.23E+01	3.30E-03
8/18/95	WT075	σ	-	10	38.4	0	0.193	437.4	9.49E+00	2.54E-03
8/18/95	WT075	თ	2	10	47.3	•	0.242	437.4	1.23E+01	3.31E-03
8/18/95	WT075	თ	9	10	57.7	0	0.740	437.4	4.14E+01	1.11E-02
8/18/95	WT075	თ	4	10	60.7	0	0.513	437.4	2.81E+01	7.53E-03
8/30/95	WT076	თ	-	10	28.8	0	0.252	431.1	1.28E+01	3.42E-03
8/30/95	WT076	<b>6</b>	2	10	33.7	0	0.454	431.1	2.44E+01	6.52E-03
8/30/95	WT076	<b>6</b>	9	10	41.0	0	0.599	431.1	3.27E+01	8.75E-03
8/30/95	WT076	თ	4	10	45.1	0	0.433	431.1	2.32E+01	6.20E-03
8/30/95	WT077	σ	-	9	32.5	0	0.447	443.7	2.46E+01	6.59E-03
8/30/95	WT077	თ	2	10	38.6	0	0.452	443.7	2.49E+01	6.67E-03
8/30/95	WT077	თ	e	10	44.7	0	3.148	443.7	1.84E+02	4.93E-02
8/30/95	VT077	σ	4	10	47.9	0	1.950	443.7	1.13E+02	3.03E-02
9/01/95	WT078	თ	-	10	24.9		2.453	431.9	1.39E+02	3.73E-02
9/01/95	WT078	6	2	10	33.2	-	43.902	431.9	2.53E+03	6.76E-01
9/01/95	WT078	6	e	10	40.8	-	68.618	431.9	3.95E+03	1.06E+00
9/01/95	WT078	σ	4	101	+ 74	Ŧ	2010	0 101	001100	4 705 YO

#### Section 3 - 1995 wind tunnel spike-corrected individual and cumulative fluxes

Table 3 contains the following data:

1) Fractional spike area, computed as the proportion of the area under the curve that can be attributed to the initial "spike" of loose PM-10. This proportion of area is graphically displayed as the dark portion of the line on the left side of the plot in Figure 3-1. It was computed using a Turbo-Pascal^(r) program that processed the data files, computing the area under the spike portion of the curve, the total area under the curve, and then calculated the ratio of the spike area to the total area.

2) Individual, not spike-corrected flux, from Table 2.

3) Fractional area, not spike, computed as (1 - fractional spike area)

4) Individual spike-corrected flux, computed as (fractional area, not spike) x (Individual, not spike corrected flux)

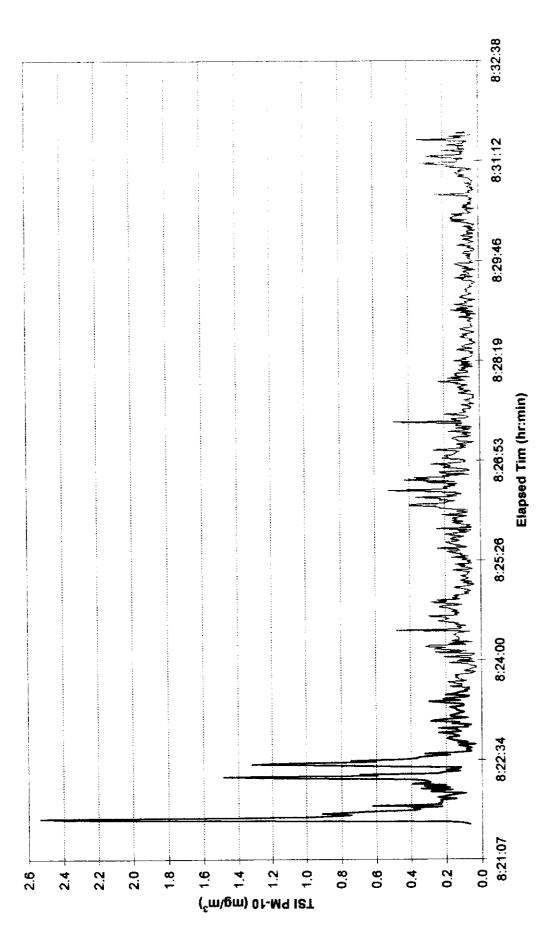
5) Cumulative flux, spike-corrected = running sum of spike-corrected fluxes over the several runs at each wind tunnel test site.

6) For Example, using data from WT002, runs 1 and 2

Run 1 Fractional area, not spike = 1 - 0.178 = 0.822. Individual flux, spike-corrected =  $0.822 \times 1.95 \times 10^{-3} = 1.61 \times 10^{-3}$  ton/acre/hour

Run 2 Fractional area, not spike = 1 - 0.602 = 0.398. Individual flux, spike-corrected =  $0.398 \times 7.22 \times 10^{-3} = 2.87 \times 10^{-3}$  ton/acre/hour

Cumulative spike-corrected flux, run 2 = individual flux, run 1 + individual flux, run 2 =  $1.61 \times 10^{-3}$  ton/acre/hour + 2.87 x  $10^{-3}$  ton/acre/hour = 4.48 x  $10^{-3}$  ton/acre/hour


Cumulative spike-corrected flux, run 3 = individual flux, run 3 + cumulative flux, run2 =

 $1.50 \times 10^{-3}$  ton/acre/hour + 4.48 x  $10^{-3}$  ton/acre/hour = 5.98 x  $10^{-3}$  ton/acre/hour

7) Blanks in Table 3 indicate runs for which 600 data point TSI files, needed for computation of spike area, were not available. Some files were corrupted or lost after download from the TSI Dust-Trak^(r). Spike corrected individual and cumulative fluxes are presented in Table 3 for all wind tunnel runs for which TSI data files are available.

Figure 3-1 - Example of Spike removal for WT-056 - Run #1

Dark Line - Spike portion of trace - removed and computed separately



<b>o</b>			The second				Number of the state
-	WT001		0.000	5.16E-04	1.000	5.16E-04	5.16E-04
2	WT001	~	0.648	1.47E-02	0.352	5.17E-03	5.69E-03
e	WT001	e	0.829	9.98E-03	0.171	1.70E-03	7.39E-03
4	WT002		0.178	1.95E-03	0.822	1.61E-03	1.61E-03
ŵ	WT002	2	0.602	7.22E-03	0.398	2.87E-03	4.48E-03
0	WT002	e	0.474	2.85E-03	0.526	1.50E-03	5.98E-03
~	WT003	-	0.501	2.46E-03	0.499	1.22E-03	1.22E-03
œ	WT003	2	0.600	1.16E-02	0.400	4.64E-03	5.87E-03
6	WT003	e	0.699	9.56E-03	0.301	2.88E-03	8.74E-03
9	WT004	-		1.63E-03			
=	WT004	2		4.18E-04			
5	WT004	m		6.86E-04			
33	WT005	-	0.273	2.23E-03	0.727	1.62E-03	1.62E-03
4	WT005	2	0.792	1.48E-03	0.208	3.09E-04	1.93E-03
15	WT006	F	0.656	2.62E-02	0.344	8.99E-03	8.99E-03
9	WT006	2	0.708	3.04E-02	0.292	8.85E-03	1.78E-02
1	WT008	m	0.434	2.44E-02	0.566	1.38E-02	3.17E-02
18	WT007	-	0.426	6.12E-04	0.574	3.51E-04	3.51E-04
6	WT007	2	0.692	9.06E-03	0.308	2.79E-03	3.14E-03
റ്റ	WT007	e	0.563	3.91E-03	0.437	1.71E-03	4.85E-03
T	WT008	-	0.306	0.00E+00	0.694	0.00E+00	00E+00
ន	WT008	2	0.441	3.82E-04	0.559	2.14E-04	2.14E-04
ន	WT008	m	0.533	2.03E-03	0.467	9.50E-04	1.16E-03
7	600TW	***		2.37E-03			
8	WT009	2		6.80E-03			
g	WT009	e		2.83E-03			
5	WT010	-	0.550	4.33E-03	0.450	1.95E-03	1.95E-03
8	WT010	7	0.625	2.31E-02		8.64E-03	1.06E-02
8	WT010	e	0.483	8.45E-03		4.37E-03	1.50E-02
ജ	WT011	-	0.568	4.40E-02		1.90E-02	1.90E-02
٣	WT011	2	0.114	1.95E-01	0.886	1.73E-01	1.92E-01
2	WT012	-	0.775	7.35E-03	0.225	1.66E-03	1.66E-03
g	WT012	7	0.766	1.30E-02	0.234	3.04E-03	4.70E-03
7	WT012	G	0.480	1.19E-02	0.520	6.18E-03	1.09E-02
S	WT013	-	0.536	3.47E-02	0.464	1.61E-02	1.61E-02
g	WT013	3	0.674	6.45E-02	0.326	2.10E-02	3.72E-02
5	WT013	e	0.231	5,83E-02	0.779	4.54E-02	8.26E-02
8	WT014	-	0.687	1.33E-02	0.313	4.16E-03	4.16E-03
2	WT014	2	0.659	9.71E-03	0.341	3.31E-03	7.47E-03
<del>\$</del>	WT014	ო	0.554	1.985-02	0.446	8.83E-03	1.63E-02
41	WT015	F	0,696	5.09E-03	0.304	1.55E-03	1 55E-03

Table 3 - Spike correction and cumulative flux calculations, all in ton/acre/hour

H	100.000
ĥo	12.2.2.2.2
Cre	10.00
)/a/	1000
₫	10000
.=	100.000
e Š	100
Ğ	1000
ilati	
	COLUMN 2
ö	Contraction of the
flu	
₽ <u></u>	
ulat	
Ē	
0 D	2.22
aŭ	
<u>j</u>	
eq	
50	
ě	
Spil	
Table 3 - Spike correction and cumulative flux calculations, all in ton/acre/hour	
e	
Tat	
-	

		ىلىتىنى بىيد				Della contraction	
4	WT015	3	0.594	4.74E-03		1.92E-03	3.47E-03
<del>1</del>	WT015	e	0.743	6.21E-03	0.257	1.60E-03	5.07E-03
4	WT016	-	0.809	1.65E-02		3.16E-03	3.16E-03
\$	WT016	2	0.618	4.72E-03	0.382	1.81E-03	4.97E-03
9	WT016	e	0.862	2.27E-02		2.67E-03	7.64E-03
47	WT017	-	0.869	2.00E-02	0.131	2.62E-03	2.62E-03
<del>6</del> 4	WT017	2		5.34E-03			
9	WT017	9		1.07E-02			
8	WT018	-	0.622	2.04E-02	0.378	7.70E-03	7.70E-03
5	WT018	2	0.777	1.59E-02	0.223	3.55E-03	1.135-02
52	WT018	e	0.419	2.28E-02	0.581	1.32E-02	2.45E-02
ទ	WT019	-	0.715	7.59E-03	0.285	2.17E-03	2.17E-03
2	WT019	3	0.715	1.08E-02	0.285	3.08E-03	5.25E-03
53	WT019	e	0.631	9.67E-03	0.369	3.57E-03	8.82E-03
8	WT020	-	0.600	3.25E-03	0.400	1.30E-03	1.30E-03
12	WT020	2	0.734	3.78E-03		1.01E-03	2.31E-03
58	WT020	e	0.673	4.21E-03	0.327	1.38E-03	3.69E-03
2	WT021	-	0.825	3.92E-03	0.175	6.87E-04	6.87E-04
8	WT021	2	0.504	5.35E-03	0.496	2.66E-03	3.34E-03
5	WT021	e	0.819	5.03E-03	0.181	9.12E-04	4.26E-03
2	WT022	-	0.437	1.10E-03		6.18E-04	6.18E-04
ß	WT022	2	0.694	2.74E-03	0.306	8.38E-04	1.46E-03
X	WT022	e	0.510	1.74E-03		8.52E-04	2.31E-03
2	WT023	-	0.909	2.43E-02		2.20E-03	2.20E-03
86	WT023	2	0.426	3.04E-02	0.574	1.74E-02	1.96E-02
37	WT023	e	0.262	3.96E-02	0.738	2.93E-02	4.89E-02
88	WT024	-	0.570	2.44E-02	0.430	1.05E-02	1.06E-02
2	WT024	2	0.170	4.15E-02	0.830	3.44E-02	4.49E-02
2	WT024	m	0.767	2.50E-02	0.233	5.83E-03	5.07E-02
5	WT025	-	0.802	2.54E-02		5.03E-03	5.03E-03
22	WT025	2	0.563	2.92E-02	0.437	1.27E-02	1.78E-02
£	WT025	e	0.619	2.15E-02	0.381	8.20E-03	2.60E-02
74	WT026	-	0.614	4.65E-03	0.386	1.80E-03	1.80E-03
75	WT026	2	0.746	9.55E-03	0.254	2.43E-03	4.23E-03
76	WT026	ო	0.587	1.18E-02	0.413	4.89E-03	9.12E-03
1	WT027	-	0.843	8.79E-03		1.38E-03	1.38E-03
8	WT027	2	0.687	7.14E-03	0.313	2.24E-03	3.62E-03
79	WT027	e	0.722	1.97E-02	0.278	5.46E-03	9.08E-03
8	WT028	*	0.616	1.41E-02	0.384	5.41E-03	5.41E-03
81	WT028	2	0.503	1.72E-02	0.497	8.58E-03	1.40E-02
8	WTDA	9	0.768	2.03E-02	0.232	4.69E-03	1 87E-02

H
ō
€
<u>e</u>
S.
ζ.
ō
Ξ
<u> </u>
s, all in ton/acre
ທົ
S.
Ĕ
<u>–</u>
5
e
<u>ಲ</u>
3
8
뷺
Ť.
Ē
3
n and cum
g
8
5
휷.
ĕ
ž
ö
9
Spike
ທີ
le 3 -
ŝ
÷
ab
Ē

0.765	0.765
.685	
429	3 0.429
469	1 0.469
546 FR5	2 0.342 3 0.685
581	
851	-
696	3 0.696
	2
	2
	1
	2
	3
	1
	2
	3
-	
349	
260	2 0.260
369	
767	1 0.767
582	0.582
516	3 0.516
656	0.656
.374	2 0.374
518	o

.

<b>1</b> 24	WT035	3 3		7.99E-02			Company of the second s
8	WT036	1	0.784	1.41E-02	0.216	3.04E-03	3.04E-03
126	WT036	2	0.627	1.46E-02	0.373	5.43E-03	8.47E-03
127	WT036	e	0.587	7.09E-02		2.93E-02	3.78E-02
128	WT037	-	0.780	1.32E-02	0.220	2.92E-03	2.92E-03
129	WT037	2	0.351	1.35E-02	0.649	8.76E-03	1.17E-02
130	WT037	e	0.571	3.97E-02		1.70E-02	2.87E-02
131	WT038	-	0.834	2.16E-03	0.166	3.59E-04	3.59E-04
33	WT038	2	0.497	2.36E-03	0.503	1.19E-03	1.56E-03
8	WT038	e	0.699	3.34E-03	0.301	1.01E-03	2.56E-03
13	WT039	-	0.709	7.42E-03	0.291	2.16E-03	2.16E-03
135	WT039	2	0.397	6.39E-03		3.86E-03	6.01E-03
136	WT039	e	0.303	1.11E-02	0.697	7.72E-03	1.37E-02
137	WT040	-	0.575	1.38E-02	0.425	5.85E-03	5.86E-03
8	WT040	2	0.278	4.92E-02	0.722	3.56E-02	4.14E-02
130	WT040	e	0.681	2.05E-02		6.52E-03	4.79E-02
<del>2</del>	WT041	-	0.761	1.29E-02	0.239	3.00E-03	3.09E-03
14	WT041	2	0.437	1.14E-02		6.40E-03	9.49E-03
142	WT041	e	0.717	1.26E-02	0.283	3.56E-03	1.31E-02
143	WT042	ſ	0.717	3.98E-03	0.283	1.13E-03	1.13E-03
4	WT042	2	0.246	9.06E-03	0.754	6.83E-03	7.96E-03
145	WT042	ω	0.753	6.72E-03	0.247	1.66E-03	9.61E-03
146	WT043	•	0.577	3.67E-02	0.423	1.55E-02	1.55E-02
147	WT043	2	0.542	5.09E-02		2.33E-02	3.88E-02
148	WT043	3	0.310	1.09E-01	0.690	7.55E-02	1.14E-01
149	WT044	-	0.535	4.74E-03	0.465	2.20E-03	2.20E-03
150	WT044	2	0.572	7.56E-03	0.428	3.24E-03	5.44E-03
151	WT044	e	0.814	1.26E-02	0.186	2.34E-03	7.78E-03
152	WT045	-	0.848	2.36E-02	0.152	3.58E-03	3.58E-03
153	WT045	2	0.747	1.41E-02	0.253	3.58E-03	7.16E-03
5	WT045	Э	0.675	2.56E-02		8.32E-03	1.55E-02
2	WT046	-	0.618	4.99E-03	0.382	1.91E-03	1.91E-03
156	WT046	2	0.595	9.31E-03	0.405	3.77E-03	5.67E-03
157	WT046	ო	0.912	2.11E-02		1.85E-03	7.53E-03
158	WT047	*-	0.769	1.22E-02	0.231	2.81E-03	2.81E-03
159	WT047	2	0.324	1.53E-02	0.676	1.03E-02	1.32E-02
160	WT047	e	0000	1.76E-02	1.000	1.76E-02	3.07E-02
161	WT048	-	0000	5.03E-04	1.000	5.03E-04	5.03E-04
162	WT048	2	0.333	1.17E-03		7.83E-04	1.29E-03
163	WT048	e	0.467	1.51E-03	0.533	8.05E-04	2.09E-03
2	WTOAR	Þ	0 245		0.655		

Table 3 - Spike correction and cumulative flux calculations, all in ton/acre/hour

ll in ton/acre/hour
3
flux calculations,
lative
nd cumu
and
correction
. Spike
<u></u>
Table 3

-	0.328	6.38E-04	0.672	4.29E-04	4.29E-04
1	0.339	3.32E-03	0.661	2.19E-03	2.62E-03
9	0.626	1.06E-02		3.97E-03	6.59E-03
t	0.666	1.48E-03	0.334	4.96E-04	4.95E-04
-		5.38E-03			
e		8.97E-03			
4		5.94E-03			
-	0000	6.50E-04	1.000	6.50E-04	6.50E-04
N	0.173	1.76E-03	0.827	1.46E-03	2.11E-03
3	0.520	3.38E-03	0.480	1.62E-03	3.73E-03
4	0.360	2.96E-03	0.640	1.89E-03	5.62E-03
-	000.0	9.75E-03	1.000	9.75E-03	9.75E-03
N		1.11E-02			No. a
e		8.72E-02			
4		2.74E-02			
-	0.341	1.66E-02	0.659	1.106-02	1.10E-02
2		1.53E-02			
3		4.14E-02			
4		1.01E-02			
ŧ	0.687	1.94E-03	0.313	6.05E-04	6.05E-04
2		3.23E-03			
3		8.87E-03			
4		7.84E-03			
-	0.528	5.10E-03	0.472	2.40E-03	2.40E-03
2		1.67E-02			
e		2.12E-02			
4		8.16E-03			
-	0.334	1.92E-03	0.666	1.28E-03	1.28E-03
2		4.30E-03			
Э		3.96E-03			
4		4.97E-03			
-		5.21E-04			
2		2.10E-03			
e		1.22E-03			
4		3.38E-03			
1	0.559	1.07E-02	0.441	4.71E-03	4.71E-03
2	0.610	1.31E-02	0.390	5.11E-03	9.82E-03
3	0.670	2.26E-02	0.330	7.43E-03	1.73E-02
4	0.251	1.24E-02	0.749	9.32E-03	2.66E-02
	0.200	1.86E-03	0.800	1.49E-03	1.49E-03
N	0.435	2.80E-03	0.565	1.58E-03	3.07E-03

206	WT059	Ś	0.585	2.83E-03	0.415	1.17E-03	4.25E-03
207	WT069	4	0.395	2.52E-03	0.605	1.52E-03	5.77E-03
Š	WT060	1	0.721	4.53E-03	0.279	1.26E-03	1.26E-03
ĝ	WT080	2	0.395	3.51E-03	0.605	2.12E-03	3,385-03
210	WT060	e	0.463	7.69E-03	0.537	4.13E-03	7.51E-03
211	WT080	4	0.538	3.27E-03	0.462	1.51E-03	9.0GE-03
212	WT061	1	0.619	1.10E-02	0.381	4.19E-03	4.19E-03
213	WT061	2	0.794	1.84E-02	0.206	3.79E-03	7.99E-03
44	WT061	Э	0.620	3.09E-02	0.380	1.17E-02	1.97E-02
215	WT061	4	0.515	1.80E-02	0.485	7.75E-03	2.75E-02
216	WT062	-	0.673	6.49E-03	0.327	2.12E-03	2.12E-03
217	WT062	2	0.889	1.79E-02	0.111	1.98E-03	4.10E-03
218	WT062	9	0.723	4.39E-02	0.277	1.21E-02	1.62E-02
219	WT062	4	0.562	2.04E-02	0.438	8.91E-03	2.52E-02
କ୍ଷ	WT063	*-	0.576	3.45E-03	0.424	1.46E-03	1.46E-03
3	WT063	2	0.229	1.47E-02	0.771	1.13E-02	1 285-02
ន	WT063	e	0.055	6.30E-03	0.345	2.17E-03	1.50E-02
223	WT063	4	0.821	1.73E-02	0.179	3.08E-03	1.81E-02
24	WT064	٢	0.645	1.34E-02	0.355	4.76E-03	4.76E-03
ŝ	WT064	2	0.605	1.24E-02	0.395	4.91E-03	9.67E-03
8	WT064	3	0.840	1.20E-02	0,160	1.92E-03	1.16E-02
ß	WT064	4	0.335	2.23E-02	0.665	1.48E-02	2.64E-02
8	WT065	-	0.706	4.21E-03	0.294	1.24E-03	1.24E-03
23	WT085	3	0.523	5.63E-03	0.477	2.69E-03	3.93E-03
ន្ត	WT065	3	0.569	9.28E-03	0. <b>4</b> 1	4.09E-03	8.02E-03
হ	WT065	4	0.684	5.84E-03	0.306	1.79E-03	9.81E-03
g	WT066	-		4.57E-03			
ន	WT066	2	1.000	2.35E-03	0.000	2.35E-03	2.36E-03
3	WT066	e	1.000	5.20E-03	0.000	5.20E-03	7.556-03
33	WT066	4					
8	WT067	-	0.401	4.62E-03	0.589	2.77E-03	2.77E-03
23	WT067	2	0.293	5.99E-03	0.707	4.24E-03	7.01E-03
8 R	WT067	9	0.625	2.81E-02	0.375	1.05E-02	1.76E-02
ଝ୍ଯ	WT067	4		9.71E-03			
8	WT068	1	0.360	1.63E-03	0.640	1.04E-03	1.04E-03
241	WT068	2	0.487	5.69E-03	0.513	2.92E-03	3.96E-03
25	WT068	0	0.451	6.62E-03	0.549	3.63E-03	7.59E-03
53	WT068	4	0.556	5.18E-03	0.444	2.30E-03	9.89E-03
244	WT069	-	0.605	6.38E-03	0.395	2.52E-03	2.52E-03
38	WT069	2	0.604	3.51E-02	0.396	1.39E-02	1.64E-02
246	WT069	ო	0.792	1.19E-01	0.208	2.47E-02	4.11E-02

Table 3 - Spike correction and cumulative flux calculations, all in ton/acre/hour

					Strike Block	prendentes fina
WT069	4	0.641	3.65E-02	0.359	1.31E-02	5.42E-02
WT070	*	0.601	2.33E-03	0.399	9.29E-04	9.29E-04
WT070	2	0.682	6.67E-03	0.318	2.12E-03	3.05E-03
WT070	3	0.468	2.15E-02	0.532	1.14E-02	1.45E-02
WT070	4	0.302	8.90E-03	0.698	6.22E-03	2.07E-02
WT071	-	0.801	2.14E-02	0.199	4.26E-03	4.26E-03
WT071	2	0.725	8.35E-02	0.275	2.30E-02	2.72E-02
WT071	e	0.682	1.42E-01	0.318	4.50E-02	7.22E-02
WT071	4	0.668	5.62E-02	0.332	1.87E-02	9.09E-02
WT072	-	0.491	7.13E-03	0.509	3.63E-03	3.63E-03
WT072	3	0.552	1.15E-02	0.448	5.16E-03	8.79E-03
WT072	en	0.741	3.82E-02	0.259	9.89E-03	1.87E-02
WT072	4	0.829	2.89E-02	0.171	4.93E-03	2.36E-02
WT073	*	0.421	2.17E-03	0.579	1.26E-03	1.26E-03
WT073	2	0.371	6.80E-03		4.28E-03	5.53E-03
WT073	e	0.403	1.46E-02	0.597	8.73E-03	1.43E-02
WT073	4	0.305	1.19E-02	0.695	8.26E-03	2.25E-02
WT074		0.318	8.21E-04	0.682	5.80E-04	5.60E-04
WT074	2	0.502	1.41E-03	0.498	7.04E-04	1.26E-03
WT074	m	0.576	2.54E-03	0.424	1.08E-03	2.34E-03
WT074	4	0.623	3.30E-03	0.377	1.25E-03	3.59E-03
WT075	-	0.713	2.54E-03	0.287	7.30E-04	7.30E-04
WT075	2	0.562	3.31E-03	0.438	1.45E-03	2.18E-03
WT075	n	0.635	1.11E-02	0.365	4.05E-03	6.22E-03
WT075	4	0.223	7.53E-03	0.777	5.85E-03	1.21E-02
WT076	-	0.401	3.42E-03	0.599	2.05E-03	2.05E-03
WT076	2	0.257	6.52E-03	0.743	4.84E-03	6.89E-03
WT076	e	0.781	8.75E-03	0.219	1.91E-03	8.81E-03
WT076	4	0.900	6.20E-03	0.100	6.21E-04	9.43E-03
WT077	-	0.770	6.59E-03	0.230	1.52E-03	1.52E-03
VT077	2	0.352	6.67E-03	0.648	4.32E-03	5.83E-03
WT077	ຕ	0.749	4.93E-02	0.251	1.24E-02	1.82E-02
WT077	4	0.515	3.03E-02	0.485	1.47E-02	3.29E-02
WT078	-	0.532	3.73E-02	0.468	1.75E-02	1.75E-02
WT078	2	0.732	6.76E-01	0.268	1.81E-01	1.98E-01
WT078	e		1.06E+00	0.680	7.19E-01	9.18E-01
WT078	4	0.588	7.72E-02	0.412	3 18F-02	9 49F-01

Table 3 - Spike correction and currulative flux calculations, all in ton/acre/hour

#### Section 4 - 1995 Wind tunnel individual and cumulative spike masses

Spike masses were computed by the following procedure:

1) The TSI Dust -Trak^(r) logging software computes an average PM-10 concentration sampled during each 600 second run.

2) The average flow rate in the riser section of the tunnel was computed as (flow from averaging pitot tube data, cfm) - (cyclone flow, cfm). The cyclone flow, choked through a venturi, was 40 cfm for all runs.

3) The total PM-10 mass passing through the riser during the sampling period is

PM-10 mass = (average riser flow rate) x (PM-10 riser concentration) x (run duration)

4) For each 600 second run, the proportion of the total signal area that corresponded to the initial "spike" of loose PM-10 was computed using a Turbo-Pascal^(r) computer program. Figure 3-1 depicts this spike area as the dark line on the left side of the plot. This proportion of spike area is presented in Table 4 in the column labeled as Aspike/Atotal.

5) The PM-10 spike mass per unit area for each run was computed as

PM-10 spike mass = (PM-10 mass) x (Aspike/Atotal) / (tunnel floor area)

and converted from mg/ft² to ton/acre using  $4.797 \times 10^{-5}$  (ton/acre) / (mg/ft²)

6) The cumulative spike masses were computed by summing spike masses from preceding runs at each site.

For example, using data from WT002, runs 1 and 2

Run 1 PM-10 spike mass =  $(0.157 \text{ mg/m}^3 \text{ x } 12.21 \text{ m}^3/\text{min x } 10 \text{ min}) \text{ x } (0.178) / 2.5 \text{ ft}^2 = 1.37 \text{ mg/ft}^2 \text{ x } (4.797 \text{ x } 10^{-5} [\text{ton/acre}]/[\text{mg/ft}^2]) = 6.56 \text{ x} 10^{-5} \text{ ton/acre}$ 

Run 2 PM-10 spike mass =  $(0.499 \text{ mg/m}^3 \text{ x } 12.21 \text{ m}^3/\text{min x } 10 \text{ min}) \text{ x } (0.602) / 2.5 \text{ ft}^2 = 14.66 \text{ mg/ft}^2 \text{ x } (4.797 \text{ x } 10^{-5} [\text{ton/acre}] / [\text{mg/ft}^2]) = 7.03 \text{ x } 10^{-4} \text{ ton/acre}$ 

The cumulative spike mass, the amount of loose PM-10 assumed to come off if the first wind tunnel run had started at the higher wind speed of Run 2, is the sum of the two spike masses for Runs 1 and 2.

Cumulative spike mass =  $0.656 \times 10^{-4} + 7.03 \times 10^{-4} = 7.69 \times 10^{-4}$  ton/acre

7) Blanks in Table 4 indicate runs for which 600 data point TSI data files were not available. Some files were corrupted or lost after download from the TSI Dust-Trak^(r). Spike mass data are presented in Table 4 for all runs for which TSI data files are available.

<b>Sta</b>	Run	Run Mapitari Indal	Avg TSI conc	Gurdens	Centered	Duradon	•	Spike mase	Currelative
			(Eyuyou)	(unueva)		Ę	2 MOM	ton/acre	mana bon/acre
WT001		00.0 0		439.0	12.43	<del>0</del>	0.0	0.00E+00	0.00E+00
WT001	2	0.648	0.971	439.0	12.43	10	31.31	1.50E-03	1.50E-03
WT001	e	0.829	0.668	439.0	12.43	10	27.54	1.32E-03	2.82E-03
WT002	-	0.178	0.157	431.1	12.21	9	1.37	6.56E-05	6.56E-05
WT002	2	0.602		431.1	12.21	10	14.66	7.03E-04	7.69E-04
WT002	e	0.474	0.215	431.1	12.21	<del>1</del> 0	4.97	2.39E-04	1.01E-03
WT003	•	0.501	0.187	439.0	12.43	10	4.66	2.24E-04	2.24E-04
WT003	2	0,600	0 772	439.0	12.43	10	23.04	1.11E-03	1.33E-03
WT003	m	0.699	0.641	439.0	12.43	10	22.28	1.07E-03	2.40E-03
WT004	-		0.139	416.8	11.80	10			
WT004	2		0.058	416.8	11.80	5			
WT004	e		0.078	416.8	11.80	9			
WT005	+	0.273	0.182	408.9	11.58	10	2.30	1.106-04	1.10E-04
WT005	2	0.792	0.131	408.9	11.58	10	4.80	2.30E-04	3.41E-04
WT006	-	0.656	1.777	418.4	11.85	9	55.27	2.65E-03	2.65E-03
WT006	2	0.708		418.4	11.85	9	80.69	3.31E-03	5.97E-03
WT006	9	0.434	1.662	418.4	11.85	9	34.16	1.64E-03	7.60E-03
WT007	-	0.426		416.8	11.80	9	1.43	6.85E-05	6.85E-05
WT007	2	0.692	0.637	416.8	11.80	10	20.80	9.98E-04	1.07E-03
WT007	3	0.563	0.292	416.8	11.80	10	77.7	3.73E-04	1.44E-03
WT008	-	0.306	0.018	427.9	12.12	ç	0.27	1.28E-06	1.28E-05
WT008	2	0.441	0.055	427.9	12.12	0	1.18	5.64E-05	6.92E-05
WT008	3	0.533	0.163	427.9	12.12	10	4.21	2.02E-04	2.71E-04
WT009	*		0.183	433.4	12.27	10			
WT009	8		0.470	433.4	12.27	2			
WT009	e		0.213	433.4	12.27	<b>P</b>			
WT010	-	0.550	0.314	426.3	12.07	ç	8.33	4.00E-04	4.00E-04
WT010	2	0.625	1.544	426.3	12.07	9	46.63	2.24E-03	2.64E-03
WT010	e	0.483	0.585	426.3	12.07	10	13.64	6.54E-04	3.29E-03
WT011	-	0.568	2.868	435.0	12.32	9	80.24	3.85E-03	3.85E-03
WT011	7	0.114	12.617	436.0	12.32	<b>e</b>	70.92	3.40E-03	7.25E-03
WT012	Ŧ	0.775	0.512	427.1	12.09	10	19.19	9.21E-04	9.21E-04
WT012	2	0.766	0.883	427.1	12.09	10	32.74	1.57E-03	2.49E-03
WT012	e	0.480	0.809	427.1	12.09	9	18.78	9.01E-04	3.39E-03
WT013	-	0.536	2.269	435.0	12.32	<b>0</b>	59.88	2.87E-03	2.87E-03
WT013	2	0.674	4.189	435.0	12.32	ę	139.10	6.67E-03	9.55E-03
WT013	ო	0.221	3.788	435.0	12.32	<del>0</del>	41.26	1.98E-03	1.15E-02
WT014	-	0.687	0.907	423.2	11,98	ç	29.85	1.43E-03	1.43E-03
WT014	2	0.659	0.672	423.2	11.98	10	21.23	1.02E-03	2.45E-03
WT014	3		1.338	423.2	11.98	10	35.51	1.70E-03	4.15E-03
WT015	ţ	0.696	0.362	429.5	12.16	10	12.25	5.88E-04	5.88E-04

Sheet 1 of 7

			<b>Constant</b>	B the strategy with the ball	Contraction North				
WT015	2	0.594	0.339	429.5	12.16	10	98.6		1.06E-03
WT015	m	0.743	0.435	429.5	12.16	10	15.72	7.54E-04	1.81E-03
WT016	-	0.809	1.093	435.8	12.34	10	43.63		2.09E-03
WT016	2	0.618	0.334	435.8	12.34	10	10.19	4.89E-04	2.58E-03
WT016	e	0.882	1.489	435.8	12.34	10	64.84		5.69E-03
WT017	-	0.869	1.330	431.1	12.21	10	56.43	2.71E-03	2.71E-03
WT017	7		0.377	4311	12.21	10			
WT017	e		0.724	431.1	12.21	10			
WT018	-	0.622	1.343	435.0	12.32	10	41.17		1.97E-03
WT018	2	0.777	1.055	435.0	12.32	10			3.91E-03
WT018	e	0.419	1.500	435.0	12.32	10	31.00		5.40E-03
WT019	•-	0.715	0.513	441.4	12.50	10	18.33		8.79E-04
WT019	2	0.715	0,717	4414	12.50	<del>,</del>	25.61	1.23E-03	2.11E-03
WT019	(M	0.631	0.645	41.4	12.50	<del>0</del>	20.35	9.76E-04	3.08E-03
WT020	-	0.600	0.234	448.5	12.70	10	7.13	3.42E-04	3.42E-04
WT020	2	0.734	0.267	448.5	12.70	10			8.20E-04
WT020	0	0.673	0.294	448.5	12.70	10	10.05	4.82E-04	1.30E-03
WT021	-	0.825	0.282	436.6	12.36	10	11.50	5.52E-04	5.52E-04
WT021	2	0.504	0.374	436.6	12.36	10			9.99E-04
WT021	9	0.819	0.353	436.6	12.36	10	-		1.68E-03
WT022	+	0.437	0.100	439.8	12.45	10			1.04E-04
WT022	7	0.694	0.205	439.8	12.45	10			4.44E-04
WT022	n	0.510	0.141	439.8	12.45	<del>2</del>			6.16E-04
WT023	t	606.0	1.555	447.7	12.68	ç			3.44E-03
WT023	2	0.426	1.938	447.7	12.68	ę			5.45E-03
WT023	e	0.262	2.518	447.7	12.68	10			7.05E-03
WT024	-	0.570	1.573	444 5	12.59	10			2.17E-03
WT024	2	0.170	2.652	444.5	12.59	<b>9</b>			3.26E-03
WT024	e	0.767	1.613	444.5	12.59	9			6.25E-03
WT025	-	0.802	1.628	446.9	12.65	10			3.17E-03
WT025	7	0.563	1.866	446.9	12.65	10	53.22		5.72E-03
WT025	e	0.619	1.382	446.9	12.65	10			7,80E-03
WT026	t	0.614	0.332	431.9	12.23	5			4.78E-04
WT026	2	0.746	0.650	431.9	12.23	10		1.14E-03	1.62E-03
WT026	e	0.587	0.798	431.9	12.23	10		1.10E-03	2.71E-03
WT027	-	0.843	0.590	440.6	12.48	<b>0</b>	24.83		1.19E-03
WT027	12	0.687	0.485	440.6	12.48	10			1.99E-03
WT027	e	0.722	1.282	440.6	12.48	10			4.20E-03
WT028	-	0.616	0.942	432.7	12.25	Ç			1.36E-03
WT028	2	0.503	1.147	432.7	12.25	10		1.	2.72E-03
acrition	6	0 769	1 342	4327	12 25	0	50 53	1 2 42E-M3	5 14E-03

.

Sheet 2 of 7

	5						CALL OF THE OWNER		mans tervines
WT029	-	0 765	0.206	433.4	12.27	9	7 74	3.71E-04	-1 -
WT029	2	0.685	0.495	433.4	12.27	9	16.65	7.99E-04	
WT029	e	0,429	0.315	433.4	12.27	10	6.64	3.18E-04	
WT030	F	0.469	0.546	441.4	12.50	9	12.80	6.14E-04	6.14E-04
WT030	2	0.342	0.500	441.4	12.50	10	8.54	4.10E-04	1.02E-03
WT030	Ś	0.685	0.585	4414	12.50	Ó	20 04	9.61E-04	1.98E-03
WT031-A		0.581	1.431	430.3	12.18	¢	40.50	1.94E-03	1.94E-03
WT031-A	2	0.851	2.674	430.3	12.18	<b>e</b>	110.92	5.32E-03	7.26E-03
WT031-A	3	0.696	4.172	430.3	12.18	<b>e</b>	141.43	6.78E-03	1.40E-02
WT031-B	1		1.392	438.2	12.41	<b>e</b>			
WT031-B	2		2.665	438.2	12.41	10			a fan de fan i fan anna an an an anna an anna an an an a
WT031-B	e		5.691	438.2	12.41	ę			
WT031-C	-		3.599	443.7	12.56	<u>1</u>			
WT031-C	2		3,940	443.7	12.56	9			
WT031-C	e		5.689	443.7	12.56	10			
WT031-D	-		3.230	449.3	12.72	9			
WT031-D	2		1.538	449.3	12.72	ę			
WT031-D	e		9.109	449.3	12.72	<b>0</b>			
WT031-E	-		1.656	429.5	12.16	5			
WT031-E	2		1.973	429.5	12.16	<b>ç</b>			
WT031-E	e		2.748	429.5	12.16	10			
WT031-F	-		1.885	432.7	12.25	<b>5</b>			
WT031-F	2		1.598	432.7	12.25	10			
WT031-F	3		2.280	432.7	12.25	<b>ç</b>			
WT031-G	۲		1.032	438.2	12.41	<b>9</b>		-	
WT031-G	2		1.601	438.2	12.41	9			
MT031-G	e		1.672	438.2	12,41	9			
WT031-H	•		22.840	439.0	12.43	10			
WT031-H	2		19.953	439.0	12.43	10			
WT031-H	ო		48.987	439.0	12.43	10			
WT032	L.	0.349	0.156	436.6	12.36	10	2.69	1.29E-04	1.29E-04
WT032	2	0.260	0.115	436.6	12.36	10	1.48	7.10E-05	2.00E-04
WT032	9	0.369	0.125	436.6	12.36	9	2.28	1.09E-04	3.10E-04
WT033	-	0.767	0.653	439.8	12.45	10	24.95	1.20E-03	1.20E-03
WT033	2	0.582	0.631	439.8	12.45	10	18.28	8.77E-04	2.07E-03
WT033	e	0.516	0.597	430.8	12.45	<del>6</del>	15.34	7.36E-04	2.81E-03
WT034	-	0.656	1.245	432.7	12.25	10	39.96	1.92E-03	1.92E-03
WT034	2	0.374	2.073	432.7	12.25	9	37.97	1.82E-03	3.74E-03
WT034	3	0.518	4.244	432.7	12.25	5	107.83	5.17E-03	8.91E-03
WT035	1		D.930	438.2	12.41	10			
	C								

Sheet 3 of 7

8						N- E			Cumulative mana terriece
WT035	3		5.148	438.2	12.41	10			
WT036	-	0.784	0.946	430.3	12.18	10	36.16		1.73E-03
WT036	7	0.627	0.978	430.3	12.18	10	29.87	1.43E-03	3.17E-03
WT036	e	0.587	4.645	430.3	12.18	10	132.84	6.37E-03	9.54E-03
WT037	-	0.780	0.878	438.2	12.41	10	33.98	1.63E-03	1.63E-03
WT037	2	0.351	0.894	438.2	12.41	0	15.56	7 46E-04	2.38E-03
WT037	e	0.571	2.571	438.2	12.41	¢	72.84	3.49E-03	5.87E-03
WT038	F	0.834	0.171	429.5	12.16	10	6.94	3.33E-04	3.33E-04
WT038	2	0.497	0.184	429.5	12.16	<b>6</b>	4.45	2.136-04	5.46E-04
WT038	3	0.699	0.248	429.5	12.16	10	8.43	4.05E-04	9.51E-04
WT039	-	0.709	0.508	435.0	12.32	10	17.75	8.52E-04	8.52E-04
WT039	5	0.397	0.442	435.0	12.32	10	8.64	4.15E-04	1.27E-03
WT039	e	0.303	0.744	435.0	12.32	9	11.11	5.33E-04	1.80E-03
WT040		0.575	0.908	439.8	12.45	ę	26.00	1.25E-03	1.25E-03
WT040	2	0.278	3.172	439.8	12.45	10	43.85	2.10E-03	3.35E-03
WT040	Э	0.681	1.336	439.8	12.45	10	45.34	2.18E-03	5.53E-03
WT041	-	0.761	0.872	430.3	12.18	10	32.34	1.55E-03	1.55E-03
WT041	2	0.437	0.770	430.3	12.18	<del>0</del>	16.41	7.87E-04	2.34E-03
WT041	e	0.717	0.849	430.3	12.18	5	29.66	1.42E-03	3.76E-03
WT042	-	0.717	0.285	438.2	12.41	ę	10.14		4.87E-04
WT042	N	0.246	0.610	438.2	12.41	ę	7.46		8.44E-04
WT042	e	0.753	0.460	438.2	12.41	0	17.19		1.67E-03
WT043	-	0.577	2.353	443.7	12.56	10	68.29	3.28E-03	3.28E-03
WT043	2	0.542	3.251	443.7	12.56	10	88.56	4.25E-03	7.52E-03
WT043	e	0.310	6.955	443.7	12.56	10	108.25	5.19E-03	1.27E-02
WT044	1	0.535	0.339	429.5	12.16	<del>0</del>	8.83	4.23E-04	4.23E-04
WT044	5	0.572	0.523	429.5	12.16	9	14.54	6.98E-04	1.12E-03
WT044	e	0.814	0.853	429.5	12.16	10	33.79	1.62E-03	2.74E-03
WT045	-	0.848	1.535	439.8	12.45	<b>0</b>	64.87	3.11E-03	3.11E-03
WT045	2	0.747	0.933	439.8	12.45	<u>0</u>	34.70	1.66E-03	4.78E-03
WT045	e	0.675	1.664	439.8	12.45	10	55.97	2.68E-03	7.46E-03
WT046	-	0.618	0.353	432.7	12.25	10	10.68	5.13E-04	5.13E-04
WT046	Ю	0.595	0.633	432.7	12.25	10	18.47	8.86E-04	1.40E-03
WT046	9	0.912	1.395	432.7	12.25	10	62.35	2.99E-03	4.39E-03
WT047	Ŧ	0.769	0.808	438.2	12.41	10	30.82	1.48E-03	1.48E-03
WT047	3	0.324	1.009	438.2	12.41	10	16.22	7.78E-04	2.26E-03
WT047	e	0.00	1.155	438.2	12.41	10	0.0	0.00E+00	2.26E-03
WT048	-	0.00	0.063	427.0	12.09	10	0.00	0.00E+00	0.00E+00
WT048	2	0.333	0.107	427.0	12.09	10	1.73	8.28E-05	8.28E-05
WT048	e	0.467	0.129	427.0	12.09	10	2.91	1.40E-04	2.23E-04
WT048	4	0.345			00.0	õ			

Sheet 4 of 7

8				###Q					Cumulative mains bortacre
WT049	-	0.328	0.071		12.37	10	1.15	5.53E-05	
WT049	N	0.339	0.243	436.7	12.37	9	4.07	1.95E-04	
WT049	e	0.626	0.712	436.7	12.37	<b>0</b>	200	1.06E-03	1.31E-03
WT050	-	0.666	0.681	418.4	11.85	9	21.50	1.03E-03	1.03E-03
WT050	2		0.770	418.4	11.85	5			
WT050	e		5.853	418.4	11.85	10			
WT050	4		1.847	421.7	11.94	5			
WT051		0.000	0.123	447.7	12.68	ç	<b>00</b> .0	0.00E+00	0,00E+00
WT051	2	0.173	0.368	447.7	12.68	<b>1</b>	3.22	1.55E-04	1.55E-04
WT051	9	0.520	0.593	447.7	12.68	<u>0</u>	15.64	7.50E-04	9.05E-04
WT051	4	0.360	0.403	447.7	12.68	<del>1</del> 0	7.36	3.53E-04	1.26E-03
WT052	-	0.000	0.071	445.5	12.62	10	0.0	0.00E+00	0.00E+00
WT052	2		0.141	445.5	12.62	10			
WT052	m		0.244	443.8	12.57	5 5			
WT052	4		0.218	442.1	12.52	10			
WT053	-	0.341	1.035	466.6	13.21	0	18.64	8.94E-04	8.94E-04
WT053	2		0.966	460.4	13.04	<u>5</u>			
WT053	e		2.573	457.9	12.97	10			
WT053	4		0.652	457.9	12.97	<b>0</b>			
WT054		0.687	0.154	438.2	12.41	¢	5.25	2.52E-04	2.52E-04
WT054	2		0.237	438.2	12.41	<del>0</del>			
WT054	60		0.598	438.2	12.41	9			
WT054	4		0.532	438.2	12.41	<b>2</b>			
WT055	1	0.528	0.350	447.7	12.68	<del>0</del>	9.38	4.50E-04	4.50E-04
WT055	7		1.076	447.7	12.68	9			
WT055	e		1.360	447.7	12.68	<b>e</b>			
WT055	4		0.542	447.7	12.68	9			
WT056	-	0.334	0.153	439.0	12.43	우	2.54	1.22E-04	1.22E-04
WT056	2		0.305	439.0	12.43	<del>6</del>			
WT056	3		0.283	439.0	12.43	<u>9</u>			
WT056	4		0.348	439.0	12.43	9			
WT057			0.083	443.7	12.56	õ			
WT057	2		0.163	443.7	12.56	<b>ç</b>			
WT057	e		0.107	443.7	12.58	Q.			
WT057	4		0.244	443.7	12.56	10			
WT058	*	0.559	0.713	439.0	12.43	10	19.82	9.51E-04	9.51E-04
WT058	2	0.610	0.866	439.0	12.43	10	26.25	1.26E-03	2.21E-03
WT058	e	0.670	1.472	439.0	12.43	10	49.07	2.35E-03	4.56E-03
WT058	4	0.251	0.825	439.0	12.43	10	10.29	4.94E-04	5.06E-03
WT059	-	0.200	0.150	435.8	12.34	10	1.48	7.09E-05	7.09E-05
WT059	2	0.435	0.210	435.8	12.34	<b>9</b>	4.51	2.16E-04	2.87E-04

: 1

Sheet 5 of 7

				Contraction of the local distance of the loc	And Street		STOR.	- there	ment torracre
WT059	9	0.585	0.212	435.8	12.34	<b>9</b>	6.12	2.94E-04	5.81E-04
WT059	4	0.395	0.192	435.8	12.34	<b>6</b>	3.74	1.80E-04	7.60E-04
WT060	-	0.721	0.318	441.4	12.50	<u>9</u>	11.46	5.50E-04	5.50E-04
WT060	2	0.395	0.253	441.4	12.50	10	5.00	2.40E-04	7.90E-04
WT060	en	0.463	0.519	441.4	12.50	9	12.01	5.76E-04	1.37E-03
WT060	4	0.538	0.238	441.4	12.50	10	6.40	3.07E-04	1.67E-03
WT061	-	0.619	0.736	437.4	12.39	10	22.57	1.08E-03	1.08E-03
WT061	2	0.794	1.212	437.4	12.39	10	47.69	2.29E-03	3.37E-03
WT061	e	0.620	2.012	437.4	12.39	10	61.82	2.97E-03	6.34E-03
WT061	4	0.515	1.055	437.4	12.39	0	26.93	1.29E-03	7.63E-03
WT062	-	0.673	0.438	446.9	12.65	Q	14.93	7.16E-04	7.16E-04
WT062	2	0.889	1.155	446.9	12.65	2	51.98	2.49E-03	3.21E-03
WT062	e	0.723	2.788	446.9	12.65	ç	102.07	4.90E-03	8.11E-03
WT062	4	0.562	1.310	446.9	12.65	ç	37.28	1.79E-03	9.89E-03
WT063	-	0.576	0.246	449.3	12.72	<del>0</del>	7.21	3.46E-04	3.46E-04
WT063	5	0.229	0.950	449.3	12.72	<u>0</u>	11.05	5.30E-04	8.76E-04
WT063	0	0.655	0.424	449.3	12.72	₽	14.14	6.78E-04	1.55E-03
WT063	4	0.821	1.111	449.3	12.72	2	46.44	2.23E-03	3.78E-03
WT064	1	0.645	0.327	436.6	12.36	<u>0</u>	10.44	5.01E-04	5.01E-04
WT064	8	0.605	0.415	436.6	12.36	10	12.41	5.95E-04	1.10E-03
WT064	en	0.840	1.838	436.6	12.36	10	76.33	3.66E-03	4.76E-03
WT064	4	0.335	0.654	436.6	12.36	<b>9</b>	10.84	5.20E-04	5.28E-03
WT065	+	0.706	0.884	441.5	12.50	10	31.20	1.50E-03	1.50E-03
WT065	2	0.523	0.819	441.5	12.50	9	21.41	1.03E-03	2.52E-03
WT065	e	0.559	0.790	441.5	12.50	10	22.09	1.08E-03	
WT065	4	0.694	1.445	441.5	12.50	10	50.15	2.41E-03	5.99E-03
WT066	-		0.301	435.3	12.33	<b>5</b>			
WT066	2	1.000	0.393	<b>4</b> 35.3	12.33	<b>P</b>	19.38	9.30E-04	9.30E-04
WT066	e	1.000	0.628	435.3	12.33	<b>6</b>	30.96	1.49E-03	2.41E-03
WT068	4	1.000	0.406	435.3	12.33	<b>6</b>	20.02	9.60E-04	3.386-03
WT067		0.401	0.316	449.5	12.73	<u></u>	6.44	3.09E-04	3.09E-04
WT067	2	0.293	0.177	449.5	12.73	<u>1</u>	2.64	1.27E-04	4.36E-04
WT067	ო	0.625	0.355	449.5	12.73	<b>0</b>	11.30	5.42E-04	9.78E-04
WT067	4					10			
WT068	-	0.360	0.134	439.0	12.43	5	2.40	1.15E-04	1.15E-04
WT068	2	0.487	0.394	439.0	12.43	10	9.55	4.58E-04	5.73E-04
WT068	e	0.451	0.453	439.0	12.43	10	10.16	4.87E-04	1.06E-03
WT068	4	0.556	0.361	439.0	12.43	10	9.98	4.79E-04	1.54E-03
WT069	1	0.605	0.435	442.1	12.52	10	13.18	6.32E-04	6.32E-04
WT069	2	0.604	2.259	442.1	12.52	10	68.28	3.28E-03	3.91E-03
WTNED	c	0 707	7 573	1 011	0101	ç	<b>C1</b> 220	00 11 F	

Sheet 6 of 7

		(mater)	(CHUSES)	(network)	tithe 1	and a	<b>Thruch</b>	mess bar/acre
4	0.641	2.345	442.1	12.52	10	75.27	3.61E-03	2.19E-02
	0.601	0.180	435.8	12.34	10	5.34	2.56E-04	2.56E-04
2	0.682	0.459	435.8	12.34	10	15.46	7.42E-04	9.98E-04
e	0.468	1.413	435.8	12.34	9	32.67	1.57E-03	2.57E-03
4	0.302	0.603	435.8	12.34	<b>0</b>	8.98	4.31E-04	3.00E-03
	0.801	1.416	432.7	12.25	<b>0</b>	55.57	2.67E-03	2.67E-03
2	0.725	5.440	432.7	12.25	<del>0</del>	193.29	9.27E-03	1.19E-02
က	0.682	9.205	432.7	12.25	10	307.76	1.48E-02	2.67E-02
4	0.668	3.670	432.7	12.25	10	120.10	5.76E-03	3.25E-02
	0.491	0.481	443.7	12.56	<b>0</b>	11.87	5.69E-04	5.69E-04
2	0.552	0.760	443.7	12.56	10	21.10	1.01E-03	1.58E-03
с 	0.741	2.451	443.7	12.56	10	91.34	4.38E-03	5.96E-03
4	0.829	1.860	443.7	12.56	10	77.53	3.72E-03	9.68E-03
-	0.421	0.171	431.1	12.21	9	3.52	1.69E-04	1.69E-04
N	0.371	0.472	431.1	12.21	9	8.54	4.10E-04	5.79E-04
en L	0.403	0.980	431.1	12.21	ę	19.27	9.24E-04	1.50E-03
4		0.802	431.1	12.21	<b>0</b>	11.93	5.72E-04	2.08E-03
-	0.318	0.084	425.5	12.05	<u>0</u>	1.29	6.18E-05	6.18E-05
2		0.123	425.5	12.05	<b>5</b>	2.98	1.43E-04	2.05E-04
3	0.576	0.197	425.5	12.05	10	5.47	2.63E-04	4.67E-04
4		0.247	425.5	12.05	<u>0</u>	7.41	3.56E-04	8.23E-04
+	0.713	0.193	437.4	12.39	₽	6.82	3.27E-04	3.27E-04
2	0.562	0.242	437.4	12.39	<b>P</b>	6.74	3.23E-04	6.50E-04
τņ	0.635	0.740	437.4	12.39	ę	23.26	1.12E-03	1.77E-03
4		0.513	437.4	12.39	<del>0</del>	5.67	2.72E-04	2.04E-03
-	0.401	0.252	431.1	12.21	6	4.93	2.37E-04	2.37E-04
2	0.257	0.454	431.1	12.21	<b>9</b>	5.71	2.74E-04	5.10E-04
ę	0.781	0.599	431.1	12.21	<del></del>	22.85	1.10E-03	1.61E-03
4	006:0	0.433	431.1	12.21	₽	19.02	9,13E-04	2.52E-03
	0.770	0.447	443.7	12.56	<b>e</b>	17.30	8.30E-04	8.30E-04
2	0.352	0.452	443.7	12.56	<b>6</b>	8.01	3.84E-04	1.21E-03
e C	0.749	3.148	443.7	12.56	<del>0</del>	118.51	5.69E-03	6.90E-03
4		1.950	443.7	12.56	<del>0</del>	50.43	2.42E-03	9.32E-03
-	0.532	2.453	431.9	12.23	ę	63.62	3.06E-03	3.06E-03
2		43.902	431.9	12.23	10	1572.55	7.54E-02	7.85E-02
9		68.618	431.9	12.23	10	1073.33	5.15E-02	1.30E-01
4	2020		C PCT	20,				

### Section 5 - 1995 Stable and Unstable cumulative fluxes and spike masses

The tables in this section represent a consolidation of the results presented in Sections 3 (fluxes) and 4 (spike masses). The tables present results organized according to the following scheme.

Table # no table	<b>Major soil group</b> 1	<b>Stability</b> Stable
no table	1	Unstable
5.2.0	2	Stable
5,2.1	2	Unstable
5.3.0	3	Stable
5.3.1	3	Unstable
no table	4	Stable
no table	4	Unstable
5.5.0	5	Stable
5.5.1	5	Unstable
5.6.0	6	Stable
no table	6	Unstable
5.7.0	7	Stable
no table	7	Unstable
5.8.0	8	Stable
5.8.1	8	Unstable
5.9.0	9	Stable
5.9.1	9	Unstable

If no data were available for a particular soil group, there is no corresponding table in this section.

Each table contains wind tunnel site designation, wind tunnel run number, major soil group designation, 1999 stability classification, average erosive wind speed extrapolated to z = 10 meters (U10), cumulative spike-corrected flux, ton/acre/hour, and cumulative spike mass (ton/acre).

Explanations of missing tables are given below:

	steep slopes, mountain-sides, inaccessible to test equipment
	located mostly outside the Las Vegas Valley
	no tested sites corresponded to this classification
Soil group 7 - unstable	no tested sites corresponded to this classification

Table 5.2.0 - Vacant land PM-10 emission factor data. Major soil group 2, Stable

	E _					
WT049	1	2	0	21.1	4.29E-04	5.53E-05
WT048	-	7	0	21.9	5.03E-04	0.00E+00
WT048	0	7	0	25.3	1.29E-03	8.28E-05
WT035	-	7	0	25.7		
WT049	2	2	0	28.5	2.62E-03	2.51E-04
WT068	-	2	0	29.5	1.04E-03	1.15E-04
WT035	2	2	0	29.6		
WT048	ო	2	0	30.2	2.09E-03	2.23E-04
WT044	-	2	0	30.3	2.20E-03	4.23E-04
WT068	2	2	0	33.1	3.96E-03	5.73E-04
WT038	-	2	0	33.2	3.59E-04	3.33E-04
WT044	5	7	0	33.4	5.44E-03	1.12E-03
WT049	က	2	0	34.2	6.59E-03	1.31E-03
WT035	e	2	0	34.3		
WT012	-	7	0	35.4	1.66E-03	9.21E-04
WT044	e	7	0	36.9	7.78E-03	2.74E-03
WT040		2	0	37.1	5.85E-03	1.25E-03
WT017	-	2	0	37.3	2.62E-03	2.71E-03
WT038	2	7	0	37.7	1.55E-03	5.46E-04
WT015	-	2	0	37.9	1.55E-03	5.88E-04
WT042	-	2	0	39.3	1.13E-03	4.87E-04
WT040	2	7	0	40.6	4.14E-02	3.35E-03
WT068	e	2	•	41.4	7.59E-03	1.06E-03
WT012	2	7	0	41.5		2.49E-03
WT038	e	7	0	41.5	2.55E-03	9.51E-04
WT034	-	2	0	41.6	6.46E-03	1.92E-03
WT041	-	2	0	42.2	3.09E-03	1.55E-03
WT036	-	7	0	42.7	3.04E-03	1.73E-03
WT017	2	2	0	43.8		
WT039	-	2	0	43.8	2.16E-03	8.52E-04
WT045	1	2	0	44.0		<b>3.11E-03</b>
WT040	6	2	o	44.8		5.53E-03
WT068	4	2	0	44.8		1.54E-03
<b>VT037</b>	•	ſ	c	AE O	2 075 03	1 R2E_03

Table 5.2.0 - Vacant land PM-10 emission factor data. Major soil group 2, Stable

910	8					
WT015	6	~	0	45.5	3.47E-03	1.06E-03
WT034	• ~		0	46.7	2.62E-02	3.74E-03
WT025	•	0	0	48.0	5.03E-03	3.17E-03
WT041	2	2	0	48.6	9.49E-03	2.34E-03
WT012	l G	0	0	49.0	1.09E-02	3.39E-03
WT039	2	2	0	49.6	6.01E-03	1.27E-03
WT038	2	2	0	49.8	8.47E-03	3.17E-03
WT045	2	2	0	50.5	7.16E-03	4.78E-03
WT017	£	2	0	50.5		
WT037	2	2	0	50.9	1.17E-02	2.38E-03
WT034	e	7	0	52.4	5.75E-02	8.91E-03
WT015	e	7	0	53.1	5.07E-03	1.81E-03
WT025	2	2	0	53.2	1.78E-02	5.72E-03
WT041	ا <del>ر</del>	2	0	53.6	1.31E-02	3.76E-03
WT042	2	0	0	54.7	7.95E-03	8.44E-04
WT037	5	2	0	55.8	2.87E-02	5.87E-03
WT036	6	2	0	56.1	3.78E-02	9.54E-03
WT039	~	2	0	56.2	1.37E-02	1.80E-03
WT045	0	2	0	56.8	1.55E-02	7.46E-03
WT042	e	2	0	60.7	9.61E-03	1.67E-03
WT025	3	7	0	61.7	2.60E-02	7.80E-03
WT048	4	0	0			

Table 5.2.1 - Vacant land PM-10 emission factor data. Major soil group 2, Unstable

Cumulative surface mass (touloury)	4.50E-04	1.29E-04	3.28E-03	1.03E-03	1.97E-03	2.52E-04		2.09E-03	2.00E-04	8.79E-04	5.52E-04		3.10E-04	7.52E-03	2.58E-03	1.04E-04	2.11E-03	9.99E-04			5.69E-03			3.91E-03	4.44E-04		1.27E-02	3.08E-03	1.68E-03	5.40E-03		6.16E-04	
	2.40E-03	1.28E-03	1.55E-02	4.95E-04	7.70E-03	6.05E-04		3.16E-03	2.26E-03	2.17E-03	6.87E-04		3.19E-03	3.88E-02	4.97E-03	6.18E-04	5.25E-03	3.34E-03			7.64E-03			1.13E-02	1.46E-03		1.14E-01	8.82E-03	4.26E-03	2.45E-02		2.31E-03	
Uncolo Distance	30.7	32.5	34.2	34.8	34.9	35.1	35.2	35.3	36.4	38.2	38.6	38.8	39.3	39.5	39.8	41.2	41.7	41.7	42.4	43.6	44.2	44.7	44.8	44.9	45.3	45.3	45.9	46.3	47.9	51.2	52.7	53.5	53.9
	+	-	-	~	-		+-	-	-	-	-	-	-	-	-	-	1	<del>~-</del>		-	-	-	-	-	-	-	-	-	-	*	-	-	-
	2	2	2	2	2	2	2	2	2	2	2	2	2	7	2	2	7	2	7	7	2	N	2	5	2	2	7	2	2	2	2	2	2
	1	-	+	-	1	-	2	   	2	F	-	2	3	2	2	-	2	2	2	9	e	4	4	7	7	e	e	e	e	3	e	3	4
	WT055	WT032	WT043	WT050	WT018	WT054	WT055	WT016	WT032	WT019	WT021	WT050	WT032	WT043	WT016	WT022	WT019	WT021	WT054	WT055	WT016	WT055	WT050	WT018	WT022	WT050	WT043	WT019	WT021	WT018	WT054	WT022	WT054

p. 1 of 1

Table 5.3.0 - Vacant land PM-10 emission factor data. Major soil group 3, Stable

,

	1 3	1 3	2 3	2 3	3	3
	0	0	0	0	0	0
	29.0	41.7	45.8	48.1	52.4	52.9
Contractive International			5.69E-03	5.67E-03	7.53E-03	7.39E-03
cumuanve solice mess (ten(acre)	0.00E+00	5.13E-04	1.50E-03	1.40E-03	4.39E-03	2.82E-03

Table 5.3.1 - Vacant land PM-10 emission factor data. Major soil group 3, Unstable

Cumulative spike mess (torvacre)	3.71E-04	1.17E-03	1.49E-03
dumulative flux spike-comples (toniacrefinaur)	6.39E-04	2.90E-03	5.42E-03
Cuon)	30.8	34.0	37.0
North Participation	•	-	-
Major sol	6	0	S
2	1	2	3
<b>8</b> 00	WT029	WT029	WT029

Table 5.5.0 - Vacant land PM-10 emission factor data. Major soil group 5, Stable

ers.	2					spike mass
WT069	-	<u>ب</u>	0		2.52E-U3	
WT065	-	ŝ	0	30.9	1.24E-03	1.50E-03
WT089	2	2	0	32.5	1.64E-02	3.91E-03
WT070	! <del>-</del>	S	0	34.3	9.29E-04	2.56E-04
MT007		- un	0	34.5	3.51E-04	6.85E-05
MT NA			0	35.1	4.76E-03	5.01E-04
ATOR5		, u.	0	36.8	3.93E-03	2.52E-03
AT No.	• -		0	37.8		3.46E-04
WT000		) v;	0	39.9	2.12E-03	7.16E-04
VATO70		, ru	0	41.2	3.05E-03	9.98E-04
A/T022		<b>.</b>	0	41.3	2.20E-03	3.44E-03
	- 6	) <b>u</b>		41.9		1.83E-02
	-   <		0	42.1		1.20E-03
VI USO	- ເ	) <b>с</b>	0	43.9	9.67E-03	1.10E-03
VI COL	• •		0	44.4		2.19E-02
VI 000	F 6	) v	0	45.5		3.58E-03
VALTOR 2	> c	) <b>4</b> 7	0	46.4	4.10E-03	3.21E-03
WT063	• ~	n n	0	46.8		8.76E-04
14/T007	1 0	• <b>•</b>	c	46.9	3.14E-03	1.07E-03
VV 1 VV	1 0	o u	, c	47.4		2.07E-03
VI USS	14	о (г.	0	47.6		5.99E-03
VALLOOD	r 0	) <b>(</b>	0	48.6		5.45E-03
	1 (1	) v.	0	49.9		1.44E-03
VAT 070	) (r	G	0	50.1	1.45E-02	2.57E-03
WT070	•	, <b></b>	0	51.4	2.07E-02	3.00E-03
WT033	- c [.]	2	0	52.6		2.81E-03
WT064	) e7	2	0	54.5	1.16E-02	4.76E-03
WT064	4	2	0	54.8	2.64E-02	5.28E-03
WT023	6	2	0	57.2		7.05E-03
WT063	•	S	0	57.6	1.50E-02	1.55E-03
WT063	4	2	0	58.8	1.81E-02	3.78E-03
WT062	. v	2	0	59.2		8.11E-03
WT062	4	ſ	c	60	2.52E-02	9.89E-03

p. 1 of 1

Table 5.5.1 - Vacant land PM-10 emission factor data. Major soil group 5, Unstable

Currulative spite mass (toviace)	1.19E-02	2.67E-02	3.25E-02	1.08E-03	3.37E-03	6.34E-03	7.63E-03
	2.72E-02	7.22E-02	9.09E-02	4.19E-03	7.99E-03	1.97E-02	2.75E-02
	29.6	34.6	37.0	37.8	43.6	53.4	54.5
	1	<b>-</b>	-	-	1	-	*-
	5	, u	1	6		2	5
	0	1 9	~			1 00	4
	WT071	VAT071	WT071	WT081	WT081	WT061	WT061

Table 5.6.0 - Vacant land PM-10 emission factor data. Major soil group 6, Stable

Cumulative spike mess (tonyaces)	6.56E-05	3.85E-03	7.69E-04	1.36E-03	1.01E-03	2.72E-03	4.78E-04	7.25E-03		5.14E-03	3.09E-04	1.19E-03	1.62E-03	9.30E-04	6.14E-04	1.99E-03	2.24E-04	2.71E-03	2.41E-03	4.36E-04	4.20E-03	1.33E-03	1.02E-03	3.38E-03	2.40E-03	9.78E-04	1.98E-03	
	1.61E-03	1.90E-02	4,48E-03	5.41E-03	5.98E-03	1.40E-02	1.80E-03	1.92E-01		1.87E-02	2.77E-03	1.38E-03	4.23E-03	2.35E-03	4.31E-03	3.62E-03	1.22E-03	9.12E-03	7.55E-03	7.01E-03	9.08E-03	5.87E-03	9.17E-03		8.74E-03	1.76E-02	1.19E-02	
	22.3	25.9	27.7	28.3	28.9	31.4	33.5	33.6	34.9	36.2	37.7	38.2	38.4	39.7	42.2	43.0	43.3	44.2	46.9	46.9	49.1	50.0	50.1	50.5	51.3	55.8	56.9	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9	9	9	9	G	8	ø	9	G	9	9	ø	8	9	9	9	9	9	9	9	9	9	9	G	9	8	9	g
<b>5</b>		•	2	•		5	-	2	-	n	-		2	2	-	2		, cu	en en	2	ę	2	2	4	e	3	e	4
	WT002	WT011	WT002	WT028	WT002	WT028	WT026	WT011	WT066	WT028	WT067	WT027	WT028	WT066	WT030	WT027	WT003	WT026	WT066	WT067	WT027	WT003	WT030	WT066	WT003	WT067	WT030	WT087

p. 1 of 1

WT074	<u>1</u>	7	0	31.9	5.60E-04	6.18E-05
WT072		~	0	32.1	3.63E-03	5.69E-04
WT074	7	7	0	37.3	1.26E-03	2.05E-04
WT072	2	7	0	37.9	8.79E-03	1.58E-03
WT073	1	2	0	39.0	1.26E-03	1.69E-04
WT047	-	~	0	40.3	2.81E-03	1.48E-03
WT047	2	7	0	44.1	1.32E-02	2.26E-03
WT073	2	7	0	44.4	5.53E-03	5.79E-04
WT072	ю	7	0	45.2	1.87E-02	5.96E-03
WT074	3	7	0	45.9	2.34E-03	4.67E-04
WT072	4	7	0	48.3	2.36E-02	9.88E-03
WT047	6	2	0	48.9	3.07E-02	2.26E-03
WT074	4	~	0	49.1	3.59E-03	8.23E-04
WT073	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>_</b>	0	53.0	1.43E-02	1.50E-03
VACT072	Ŷ	7	c	58.0	2.25E-02	2.08E-03

.

Stable
oil group 8,
Major so
i factor data.
Б
PM-10 er
Vacant land PM-10 emissi
- Va
<b>Table 5.8.0</b>

1         8         0         18.4         1.95E-03           1         8         0         24.5         1.06E-02           1         8         0         24.5         1.06E-02           1         8         0         27.2         6.50E-04           1         8         0         27.2         6.50E-04           1         8         0         30.9         9.75E-03           1         8         0         31.8         8.99E-03           2         8         0         31.6         9.75E-03           2         8         0         31.6         1.76E-02           2         8         0         37.6         1.50E-02           2         8         0         31.6         1.76E-03           2         8         0         37.5         1.16E-03           3         8         0         37.5         1.16E-03           3         8         0         37.6         1.16E-03           3         8         0         37.6         1.16E-03           3         8         0         31.7         1.66E-03           3         8		8			20		
8         0         18.4           8         0         24.5           8         0         29.7           8         0         29.7           8         0         29.7           8         0         23.5           8         0         31.8           8         0         31.8           8         0         33.5           8         0         37.4           8         0         37.4           8         0         37.5           8         0         37.5           8         0         37.5           8         0         37.5           8         0         37.5           8         0         37.5           8         0         37.5           9         38.6         37.5           9         38.9         37.5           9         38.9         37.5           9         38.9         37.5           9         38.9         37.5           9         9         37.5           9         9         37.5           9         9	dina.					<b>Charlensing</b>	(entacre)
8         0         24.5           8         0         23.2           8         0         23.2           8         0         23.5           8         0         31.8           8         0         31.8           8         0         31.8           8         0         31.8           8         0         33.5           8         0         33.5           8         0         33.5           8         0         37.4           8         0         37.5           8         0         37.5           8         0         37.5           8         0         37.5           8         0         37.5           9         38.9         37.5           9         38.9         37.5           9         38.9         37.5           9         38.9         37.5           9         38.9         37.5           9         38.9         37.5           9         9         37.5           9         9         37.5           9         9	1	1	8	0	18.4	1.95E-03	4.00E-04
8         0         27.2           8         0         29.7           8         0         30.9           8         0         31.8           8         0         31.8           8         0         33.5           8         0         33.5           8         0         33.5           8         0         37.6           8         0         37.6           8         0         37.6           8         0         37.6           8         0         37.6           8         0         37.6           8         0         37.6           8         0         37.6           8         0         38.0           9         0         38.0           9         38.0         38.0           9         38.0         38.0           9         38.0         38.0           9         38.0         38.0           9         38.0         38.0           9         38.0         38.0           9         8         0           8         0	1	2	Ø	0	24.5	1.06E-02	2.64E-03
8         0         29.7           8         0         31.8           8         0         31.8           8         0         31.8           8         0         33.5           8         0         33.5           8         0         33.5           8         0         33.5           8         0         33.5           8         0         33.5           8         0         33.5           8         0         37.6           8         0         37.6           8         0         38.0           8         0         37.6           8         0         38.0           8         0         38.0           8         0         38.0           8         0         38.0           8         0         38.0           8         0         44.4           8         0         44.4           8         0         44.4           8         0         46.1           8         0         44.4           8         0         46.1	Ł	1	8	0	27.2	6.50E-04	00+300.0
8         9         9         30.9           8         8         8         9         33.5.0           8         8         8         8         33.5.0           8         8         8         9         33.5.1           8         8         8         8         33.5.1           8         8         8         9         33.5.1           8         8         8         33.5.1         33.5.1           8         8         9         9         33.5.1           8         8         9         9         33.5.1           8         8         9         9         33.5.1           8         9         9         33.5.1         33.5.1           8         9         9         33.5.1         33.5.1           8         9         9         33.5.1         33.5.1           8         9         9         33.5.1         33.5.1           8         9         9         33.5.1         33.5.1           8         9         9         33.5.1         9           9         9         9         9         9	1	-	8	0	29.7	0.00E+00	1.28E-05
8         0         31.8         33.5         1           8         8         0         0         35.7         1         33.5           8         8         0         0         33.5         1         33.5         1         3           8         8         0         0         33.5         1         3         33.5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>1</td> <td>-</td> <td>ω</td> <td>0</td> <td>30.9</td> <td>9.75E-03</td> <td>0.00E+00</td>	1	-	ω	0	30.9	9.75E-03	0.00E+00
8         0         33.5           8         8         0         33.5           8         8         0         33.5           8         8         0         33.5           8         8         0         33.5           8         8         0         33.5           8         8         0         33.7           8         8         0         33.7           8         8         0         33.7           8         0         0         33.7           8         0         0         33.7           8         0         0         33.7           8         0         0         33.7           8         0         0         33.7           8         0         0         33.7           8         0         0         33.7           8         0         0         33.7           8         0         0         33.6           8         0         0         44.4           8         0         44.4           1         45.3         1	1	┥┯	8	0	31.8	8.99E-03	2.65E-03
8         8         8         8         8         8         8         8         8         9         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	1	0	8	0	33.5		1.55E-04
8         0         35.7           8         0         0         35.7           8         0         0         37.6           8         0         0         37.6           8         0         0         37.6           8         0         0         37.5           8         0         0         37.5           8         0         0         37.5           8         0         0         37.5           8         0         0         37.5           8         0         0         37.5           8         0         0         37.5           8         0         0         37.5           8         0         0         37.5           8         0         0         38.6           8         0         0         44.4           8         0         44.4         4.7           8         0         4.4         4.7           8         0         4.4         4.7           9         4.7         4.7         4.7           1.3         4.7         3.3         4.7		2	8	0	35.0	2.14E-04	6.92E-05
8     0     37.0       8     0     37.0       8     0     37.5       8     0     37.5       8     0     37.5       8     0     37.5       8     0     37.5       8     0     38.9       8     0     38.9       8     0     38.9       8     0     38.9       8     0     44.7       8     0     44.7       8     0     45.1       8     0     45.1       8     10     45.1       8     10     45.1	1	3	8	0	35.7	1.50E-02	3.29E-03
8         0         37.4           8         0         37.5           8         0         37.5           8         0         37.5           8         0         337.5           8         0         337.5           8         0         33.5           8         0         33.6           8         0         38.9           8         0         38.9           8         0         38.9           8         0         4.0.3           8         0         4.1.5           8         0         4.1.5           8         0         4.1.5           8         0         4.1.5           8         0         4.1.5           8         0         4.1.5           8         0         4.1.5           1.15         4.1.5	1	2	8	0	37.0		
8     0     37.5       8     8     0     37.5       8     8     0     337.5       9     37.5     33.0     33.0       9     8     0     0     33.0       9     8     0     0     33.0       9     8     0     0     33.0       8     8     0     0     33.0       8     8     0     0     33.0       8     8     0     0     33.0       8     8     0     0     44.4       1     46.1     46.1     46.1       1     1     1     1	1	-	8	0	37.4	4.16E-03	1.43E-03
8     0     37.6       8     8     0     38.0       8     8     0     38.0       8     8     0     38.0       8     8     0     38.0       8     9     0     38.0       8     8     0     0       8     9     0     38.0       8     9     0     14.1       8     0     14.4     4.1.5       8     0     14.4     4.1.5       8     1     15.1     14.4       1     15.8     14.4       1     15.8     14.4       1     15.8     14.4	i	1	8	0	37.5		
8       8       8       8       8       8       8       8       8       8       33.0         9       9       9       0       0       0       0       38.9       38.9       38.9       38.9       0       38.9       0       38.9       0       38.9       0       38.9       0       0       0       0       0       38.9       0       38.9       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	ł	2	ø	0	37.6	1.78E-02	5.97E-03
8       8       8       8       33.9         8       8       8       8       33.9         8       8       8       8       33.9         8       8       8       9       33.9         8       8       9       9       33.9         8       8       9       9       33.9         8       8       9       9       34.1         8       9       9       1.5       4.4.7         8       1.5       4.4.7       4.4.7         1.5       1.5       1.5       1.5         1.8       1.5       1.5       1.5         1.8       1.5       1.5       1.5		-	8	o	38.0		
8         9         0         39.6           8         8         8         0         39.6           8         8         8         8         0         39.6           8         8         8         8         9         0         39.6           8         8         8         9         0         14.1         15.3         14.1           8         9         0         14.4         14.4         15.8         14.4         14.1         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5         14.5	1	с С	8	0	38.9		7.60E-03
8         0         40.3           8         0         41.5           8         0         41.5           8         0         41.5           8         0         44.4           8         0         44.4           8         0         44.4           8         0         46.1           8         0         46.1           8         0         46.1           8         0         46.1	1	с С	8	0	39.6		2.71E-04
8         0         8         0         8         40.6         41.5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         6         6         6         6         6         6         6         6         7         8         8         8         0         0         4         4         4         7         8         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td>1</td> <td>3</td> <td>ø</td> <td>0</td> <td>40.3</td> <td>3.73E-03</td> <td>9.05E-04</td>	1	3	ø	0	40.3	3.73E-03	9.05E-04
8         0         8         8         9         41.5         8         8         8         8         8         8         9         1         4         1         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th="">         1         1</th1<></th1<>	1	2	œ	0	40.6		2.45E-03
8         0         42.3           8         0         44.4           8         0         44.4           8         0         44.7           8         0         44.7           8         0         44.7           8         0         44.7           8         0         45.8           8         0         46.1           8         0         46.1           8         1         46.1           8         1         46.1	1	4	80	0	41.5	5.62E-03	1.26E-03
8         0         44.4         44.4         44.4         44.7         44.7         44.7         44.7         45.8         46.1         46.1         46.1         46.1         46.1         46.1         46.1         46.1         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8         47.8<	1	2	8	0	42.3		
8 0 44.7 8 0 45.8 8 0 46.1 8 0 46.1 8 0 46.1 8 0 46.1	1	3	8	0	44.4		
8 0 45.8 8 0 46.1 8 0 46.1 8 0 46.1	1	2	æ	0	44.7		
© © © ∞ ∞ ∞	1	с С	8	•	45.8		4.15E-03
8	1	4	ø	0	46.1		
8	1	e	ø	0	46.6		
		с С	ω	0	47.8		

p. 1 of 1

Sate 2 WT005	-			0.0		
WT056	- 0	∞ •	•	27.9	1.28E-03 1 03E-03	
W10053	<b>7</b> -	0 00		28.4	1.10E-02	
WT057	•	0	-	30.2		
WT057	2	ø	-	33.5		
WT031-G	-	ω	+	33.6		
WT053	5	8	-	33.7		
WT056	2	æ	1	33.9		ļ
<b>WT031-H</b>	-	œ	1	36.2		
WT057	9	80	F	36.9		
WT031-F	-	8	1	38.1		ł
WT031-G	7	ø	1	38.6		
WT013		æ	Ļ	38.7		
WT031-A		8	-	38.8	9.02E-03	1
WT031-B	-	Ø	-	39.0		1
WT056	3 S	ø	<b>*</b>	41.1		İ
WT031-C	-	ø	£	41.5		
WT031-H	2	8	-	41.6		į
WT031-G	с	œ	-	42.5		
WT031-E		ø	Ļ	42.9		
WT056	4	σ	1	43.1		
WT057	4	8	1	43.1		1
WT053	3	æ	F	43.2		
WT031-F	2	ø	٢	43.8		
WT053	4	Ø	-	44.2		
WT031-A	2	8	Ŧ	44.7		ł
WT020	-	œ	-	44.7	1.30E-03	
WT031-B	2	ø	۲	44.9		
WT031-H	e	∞		44.9		
WT020	8	ø	1	45.1	2.31E-03	1
WT031-D	-	8	-	47.1		
WT031-A	ო	8	۲	47.2	3.44E-02	1
WT031_C	2	ω	-	47.7		1

Table 5.8.1 - Vacant land PM-10 emission factor data. Major soil group 8, Unstable

Table 5.8.1 - Vacant land PM-10 emission factor data. Major soil group 8, Unstable

WT031-F	0 0 0	<b>8</b> 0 0	V	<b>4</b> 1.9 <b>4</b> 1.9		
WT013	2	ထ	*	48.7	3.72E-02	9.55E-03
WT031-E	2	Ø	+	49.5		
NT031-C	e	Ø	-	50.4		
WT031-E	с С	ø	1	52.7		
MT031-D	7	ø	-	54.2		
WT013	3	ø	-	54.8	8.26E-02	1.15E-02
WT020	ũ	ø	-	55.7	3.69E-03	1.30E-03
MT031-D	3	œ	-	59.65		

Table 5.9.0 - Vacant land PM-10 emission factor data. Major soil group 9, Stable

Cumulative Solice mass	(tenvacre)	5.50E-04	2.37E-04	7.90E-04	8.30E-04	9.51E-04	5.10E-04	7.09E-05	1.37E-03	3.27E-04	1.21E-03	2.87E-04	1.61E-03	2.21E-03	1.67E-03	6.90E-03	2.52E-03	6.50E-04	9.32E-03	4.56E-03	5.06E-03	5.81E-04	7.60E-04	1.77E-03	2.04E-03
	and the second	1.26E-03	2.05E-03	3.38E-03	1.52E-03	4.71E-03	6.89E-03	1.49E-03	7.51E-03	7.30E-04	5.83E-03	3.07E-03	8.81E-03	9.82E-03	9.03E-03	1.82E-02	9.43E-03	2.18E-03	3.29E-02	1.73E-02	2.66E-02	4.25E-03	5.77E-03	6.22E-03	1.21E-02
<b>010</b>	E (mom) -	25.4	28.8	30.4	32.5	32.8	33.7	34.7	37.9	38.4	38.6	40.8	41.0	41.3	41.3	44.7	45.1	47.3	47.9	50.4	51.6	52.4	52.6	57.7	80.7
Unstable		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Major soil Unstable		<b>о</b>	თ	6	6	თ	6	6	6	<b>6</b>	6	6	6	6	6	6	თ	6	6	6	σ	6	6	6	6
<b>M</b>		-	-	2	-	1	2		6		2	2	0	2	4	e	4	2	4	Э	4	3	4	e	4
201		WT060	WT076	WT060	WT077	WT058	WT076	WT059	WT060	WT075	WT077	WT059	WT076	WT058	WT060	WT077	WT076	WT075	WT077	WT058	WT058	WT059	WT059	WT075	WT075

Table 5.9.1 - Vacant land PM-10 emission factor data. Major soil group 9, Unstable

•

Cimelative actionates (timelative)	3.06E-03	7.85E-02	2.17E-03	1.30E-01	3.26E-03	1.37E-01	6.25E-03
	1.75E-02	1.98E-01	1.05E-02	9.18E-01	4,49E-02	9.49E-01	5.07E-02
	24.9	33.2	34.2	40.8	42.5	44.1	47.5
	1	-	-	-	-	-	-
	6	6	6	6	5	0	6
5		. 7	-	en en	2	4	e
<b>8</b>	WT078	WT078	WT024	WT078	WT024	WT078	WT024

### Sections A and B - 1995 Unstable and Stable cumulative fluxes and spikes - sorted by wind speed category

Unstable Stable Wind speed category all soil group all soil groups Table # Table # (extrapolated to z=10 m) **B**.0 15-19.9 mph **B**.1 A.1 20-24.9 mph **B.2** 25-29.9 mph A.2 A.3 **B.3** 30-34.9 mph **B.4** A.4 35-39.9 mph **B**.5 A.5 40-44.9 mph A.6 **B**.6 45-49.9 mph **B**.7 A.7 50-54.9 mph **B.8** A.8 55-59.9 mph **B**.9 60-64.9 mph

Data in the tables in Section A and B are organized as follows:

These tables contain the data and computations of the geometric mean spike-corrected cumulative fluxes (ton/acre/hour) and cumulative spike masses (ton/acre), for all soil groups in each wind-speed range.

To generate these tables, data from the Section 5 Tables was combined, and sorted by wind speed range and surface stability category, and exported to Tables A.1-A.8 and B.0 through B.9. The flux and spike mass data were then log10 transformed, and computations of mean and standard deviation were run on the log10-transformed data. The log10means and standard deviations were then back-transformed to generate the geometric mean data. The following formula were used for the back-transformations:

geometric mean - 1 standard deviation	10 ^(mean of logs + standard deviation of logs)
geometric mean	10 ^(mean of logs)
geometric mean + 1 standard deviation	10 ^(mean of logs + standard deviation of logs)

The transformations were performed because most of the data sets exhibited a strong amount of right-skew (right-skew =a condition where the data set contains a few high values far from the mean, but no low values equally distant from the mean)

Results from the tables in Sections A and B were combined into the summary tables presented in Section C

	Vistuched / Instable	instable Extrapolated	cumulative		cumulative spike	
	yes = 1, no = 0	10-meter	spike-corrected		mass (ton/acre) (ton/acre)	loa10(spike mass)
		velocity (mph)	Cu.	5		3 058
		0 %	1 62E-03	-2.790	1.10E-04	
WT005 1 8		24.0	A DAE ON	-2.370	2.67E-03	-2.574
W/T/71 5 1 5		V.C2		757	<u>3 065-03</u>	-2.514
		24.9	1.75E-02	10/.1-	0.00	
W1078						
				206 0		-3.015
				DOC'7-		2 2 2 1 2
average of logs				0 519		0.617
std.dev of logs				C		8
sample size			A EAF A3	>	1 47E-04	
geom mean - 1 std.dev					<u>9 65E-04</u>	
Geom mean			4.800-00		6 33F-03	
neom mean + 1 std dev			1.63E-UZ		00.00	

Table A.1 - Individual data points - Unstable - 20-25 mph

Site	Run Soil grou	Run Soil group Disturbed / Unstable yes = 1, no = 0	nstable Extrapolated 2 = 0 10-meter velocity (mph)	spike-corrected flux (ton/acre/hr)	log10(flux)	cumulative spike mass (ton/acre) (ton/acre)	log10(spike mass)
	с В			1.93E-03	-2.714	3.41E-04	-3.468
WT053	9 6		28.4	1.10E-02	-1.960	8,94E-04	-3.048
WT056	1 8		27.9	1.28E-03	-2.892	1.22E-04	-3.914
WT071	2 5		29.6	2.72E-02	-1.565	1.19E-02	-1.923
averade of logs					-2.283		-3.066
std.dev of loas					0.626		0.853
sample size	-				4		4
neom mean - 1 std.dev				1.23E-03		1.14E-04	
reom mean				5.21E-03		8.16E-04	
geom mean + 1 std dev				2.21E-02		5.82E-03	

Table A.2 - Individual data points - Unstable - 25-30 mph

	RINS	oil aroup	Run Soil aroun Disturbed / U	Unstable	nstable Extrapolated	cumulative		cumulative spike	
) <b>Pe</b>			yes = 1, no = 0	0 1 2	10-meter	spike-corrected		mass (ton/acre)	Veren etterler
Statistics					velocity (mph)	flux (ton/acre/hr)	(XNII)ULGO	(yon/acre)	100 In(shike iiiase)
W/TO4 R	-	- -	L L		34.9	7.70E-03	-2.113	1.97E-03	-2.704
WT024		σ	L		34.2	1.05E-02	-1.979	2.17E-03	-2.664
14/T020		, <b>c</b>			30.8	6.39E-04	-3.195	3.71E-04	-3.430
WT020	- ~	0			34.0	2.90E-03	-2.537	1.17E-03	-2.932
WT031-G	-	8			33.6				
WITO22					32.5	1.28E-03	-2.894	1.29E-04	-3.889
VV - 002		• ~	•		34.2	1.55E-02	-1.809	3.28E-03	-2.485
WTO50	-	- ~			34.8	3.26E-03	-2.487	1.03E-03	-2.987
10/T053		, a			33.7	1.10E-02	-1.960		
WTOSE VALUES	<u>ا</u> -	, c	•	•	30.7	2.40E-03	-2.619	4.50E-04	-3.347
1000 1000	- ~				33.9	1.28E-03	-2.892		
VALUE 2		a	<b>-</b>		30.2	والمستعلقية بالقالية المراجعة والمراجعة والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع			
	-   0	γœ			33.5				
	<b>۱</b> ۵	54			346	7 23E-02	-1.141	2.67E-02	-1.573
W10/1	<b>,</b> (	0			33.0	1 99E-01	-0.702	7.85E-02	-1.105
	4	0							
	-+-						-2 194		-2.712
average of logs							0 726		0.841
std.dev of logs							2.0		10
sample size							7		2
deom mean - 1 std dev						1.18E-03		2.80E-04	
geom mean						6.40E-03		1.94E-03	
geom mean + 1 std dev						3.48E-02		1.35E-02	

Table A.3 - Individual data points - Unstable - 30-35 mph

and ste	Ru	Soll group	Run Soli group Disturbed / Unstable yes=1, no=0	Extrapolated 10-meter	cumulative spike-corrected		cumulative spike mass (ton/acre) (ton/acre)	
WT013	-	8		38.7	1.61E-02	-1.792	2.87E-03	-2.542
WT016	-	2		35.3	3.16E-03	-2.500	2.09E-03	-2.679
WT016	2	2		39.8	4.97E-03	-2.304	2.58E-03	-2.588
WT019	-	2		38.2	2.17E-03	-2.664	8.79E-04	-3.056
WT021	+	2	-	38.6	6.87E-04	-3.163	5.52E-04	-3.258
WT029	e	e		37.0	5.42E-03	-2.266	1.49E-03	-2.827
WT031-A	-	8	-	38.8	9.03E-03	-2.045	1.94E-03	-2.712
WT031-B	-	8		39.0				
WT031-F		8	~	38.1				
WT031-G	8	8	-	38.6				
WT031-H	-	æ		36.2				
WT032	2	2	-	36.4	2.26E-03	-2.647	2.00E-04	-3.698
WT032	9	2		39.3	3.19E-03	-2.496	3.10E-04	-3.509
WT043	2	2		39.5	3.88E-02	-1.411	7.52E-03	-2.124
WT050	7	2	-	38.8	3.26E-03	-2.487		
WT054	-	7		35.1	6.06E-04	-3.218	2.52E-04	-3.599
WT055	2	7	1	35.2	2.40E-03	-2.619		
WT057	<b>თ</b>	8	~	36.9				
WT061	-	ŝ	-	37.8	4.20E-03	-2.377		-2.965
WT071	4	5	-	37.0	9.09E-02	-1.041	3.25E-02	-1.489
average of logs						-2.335		-2.850
std.dev of togs						0.582		0.614
sample size	 					15		
geom mean - 1 std.dev					1.21E-03		3.43E-04	
geom mean					4.62E-03		1.41E-03	
geom mean + 1 std dev					1.76E-02		5.82E-03	

Table A.4 - Individual data points - Unstable - 35-40 mph

Matrix         Yese - 1, no = 0         10-meters         pplies-corrected         pplier         pplies-core         pplies-core <th>Sthe</th> <th>Run</th> <th>Soil aroup</th> <th>Disturbed / Unstable</th> <th>el Extrapolated</th> <th>cumulative</th> <th></th> <th>cumulative spike</th> <th></th>	Sthe	Run	Soil aroup	Disturbed / Unstable	el Extrapolated	cumulative		cumulative spike	
Signation         Second Second         Modelity (emblic)         Confidence         Population           2         1         442         1.136.03         -2.117         5666.03         2010           2         2         1         447         1.365.03         -2.16         3916.03         -0.010           2         2         1         447         1.365.03         -2.46         3916.03         -0.01           2         2         1         447         1.365.63         -2.46         3916.03         -0.01           2         9         1         447         1.365.63         -2.46         9956.04         -0.01           2         9         1         447         1.516.02         -1.327         1.266.03         -0.02           2         9         1         443         1.516.02         -1.327         1.266.03         -0.02           2         8         1         449         -1.616.02         -1.827         1.266.03         -0.02           2         8         1         449         -1.616.02         -1.827         1.266.03         -0.02           2         8         1         443         -1.600         -1.827				0 t <u>1</u>		spike-corrected		mass (ton/acre)	
3         2         1         442         7.54E.03         -2.917         5.55E.03         -2.917         5.55E.03         -2.280         3.91E.03           2         2         1         417         3.36E.03         -2.286         3.91E.03            2         2         1         417         3.36E.03         -2.286         3.91E.03            1         2         1         417         3.36E.03         -2.286         3.91E.03            1         2         9         1         417         3.36E.03         -2.286         3.91E.03            2         9         1         413         1.51E.02         -1327         3.26E.03         -1326            2         9         1         413         1.51E.02         -1327         3.26E.03	Statistics				velocity (mph)	flux (ton/acre/hr)	log10(flux)	(ton/acre)	kog 10(spike mass)
2         2         1         443         113E.02         -1.946         391E.03         -1.946         301E.03         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946         -1.946	WT016	٣	~	*	44.2	7.64E-03	-2.117	5.69E-03	G47.7-
2         2         1         417         5.556.03         2.280         2.116-03         2.06           2         2         1         417         3.06.03         2.866         996.04         1           2         2         1         417         3.06.03         2.476         996.04         1           2         6         1         417         3.366.03         2.476         996.04         1           2         6         1         417         1516.02         1.320         3.06.03         2.06.03         1           2         6         1         415         1516.02         1.320         3.06.03         2.06.03         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.03         0.06.03         0.06.03         0.06.03         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04         1         0.06.04	W/T018	1	0		44.9	1.13E-02	-1 949		-2.408
1         6         1         447         130E03         2.885         3.42E-04         -           2         2         1         417         151E.02         1.34E.03         2.476         996E.04         -           2         2         1         417         151E.02         1.827         1.55E.03         1.01E.04         -           2         6         1         417         1.51E.02         1.827         7.25E.03         1.01E.04         -           2         6         1         417         1.51E.02         1.822         7.25E.03         -         -           2         6         1         415         1         415         1.822         7.26E.03         -         -           2         8         1         415         1.16E.02         1.182         7.26E.03         -         -           2         8         1         416         3.26         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>WT010</td> <td>10</td> <td>0</td> <td></td> <td>41.7</td> <td>5.25E-03</td> <td>-2.280</td> <td></td> <td>-2.676</td>	WT010	10	0		41.7	5.25E-03	-2.280		-2.676
2         2         1         417         33E.03         2.476         996.04         -           2         9         1         412         6.18E.04         -1.377         3.28E.03         -         -           2         9         1         417         1.51E.02         -1.377         3.28E.03         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	WTDO	-	8	L	44.7	1.30E-03	-2.885		-3.466
1         2         1         412         6 16E-04         -3208         104E 04         -           2         9         1         425         4 48E-02         -1.347         3 26E-03         3 26E-03         -           2         8         1         415         15E 02         -1.827         7 26E-03         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	WT021		) C	1	41.7	3.34E-03	-2.476		-3.000
2         9         1         425         44E-02         -1347         326E-03         -           2         8         1         447         15E-02         -1822         726E-03         -           1         8         1         415         15E-02         -1.822         726E-03         -           2         8         1         415         -         43         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	WT02	•	10		41.2	6.18E-04	-3.209		-3.981
2         8         1         447         151E.02         -1.822         7.26E.03            2         6         1         419         151E.02         -1.822         7.26E.03            1         8         1         419         3.36         1         419            2         8         1         416              3         8         1         416         3.26E.03         -2.487            3         8         1         416	WT024	~	0	1	42.5	4.49E-02	-1.347		-2.48/
2         6         1         449           1         8         1         415           1         8         1         425           2         8         1         425           3         8         1         416           2         8         1         416           3         8         1         416           2         8         1         416           3         8         1         416           3         8         1         416           2         1         106.02         -1960           2         1         443         3.26E.03         -2.437           4         2         1         1.0E.02         -1.960           2         1         44.7         2.46E.03         -2.619           3         6         1         44.7         2.46E.03         -2.619           3         6         1         44.7         2.46E.03         -2.619           4         8         1         43.6         -3.66         -3.69           3         6         1         1.28E.03         -2.892         -3.619 <td>WT031-A</td> <td>7</td> <td>8</td> <td>+</td> <td>44.7</td> <td>1.51E-02</td> <td>-1.822</td> <td></td> <td>-2.139</td>	WT031-A	7	8	+	44.7	1.51E-02	-1.822		-2.139
1         8         1         415         415           1         8         1         423         415         416           2         8         1         423         416         416           2         8         1         425	WT031-B	2	8	-	44.9				
1         8         1         429           2         8         1         426           3         8         1         426           4         1         426         1.06.02           3         8         1         426           4         2         1         449           3         8         1         443           4         1         432         1.106.02         1.960           4         8         1         442         1.106.02         1.960           3         2         1         432         1.06.02         1.960           3         2         1         432         2.065.03         2.619         2.619           3         2         1         431         1.286.03         2.892         1.960           4         8         1         431         1.286.03         2.892         1.376.01           4         8         1         431         1.286.03         2.997         1.376.01           5         9         1         431         1.286.03         2.997         1.376.01           5         9         1         436	WT031-C	-	8	-	41.5				
2         8         1         43.8         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.6         43.2         11.06.02         43.6         5.326.03         2.361         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.326         5.327         5.326         5.327         5.32	WT031-E	-	8	-	42.9				
3     8     1     425       2     8     1     416       2     8     1     416       3     8     1     416       4     2     1     66       3     8     1     432     1106-02       4     2     1     432     1106-02     1360       3     2     1     432     106-02     1360       3     2     1     437     246-03     2619       3     2     1     437     246-03     2619       3     2     1     437     1266-03     2619       3     3     1     437     1266-03     2619       3     9     1     437     1266-03     2.097       3     9     1     437     1266-03     2.097       3     9     1     1266-03     2.097     3376-03       3     9     1     1266-03     2.097     3376-03       1058     1     1266-03     2.097     3376-03       1060     1     1266-03     2.097     3376-03       1068     1     431     7.966-03     2.097       1068     1     436     9.06	WT031-F	2	8	<b>~</b>	43.8				
H281416H38144.93.26E.03 $-2.481$ H38144.93.26E.03 $-2.481$ 18144.21.10E.02 $-1.960$ $-3.218$ 22143.52.46E.03 $-2.619$ $-3.218$ 32141.11.26E.03 $-2.619$ $-3.216$ 32141.11.28E.03 $-2.619$ $-3.2619$ 48141.11.28E.03 $-2.619$ $-3.219$ 48143.1 $1.26E.03$ $-2.619$ $-3.219$ 511 $41.1$ $1.28E.03$ $-2.619$ $-3.219$ 699 $-1$ $43.1$ $-2.693$ $-2.619$ 699 $-1$ $-44.1$ $-2.693$ $-2.692$ 69 $-1$ $-44.1$ $-2.693$ $-2.692$ 79 $-1$ $-44.1$ $-2.693$ $-2.692$ 91 $-44.1$ $-2.693$ $-2.692$ $-3.37E.01$ 69 $-6.66.01$ $-0.022$ $-1.37E.01$ 69 $-6.66.01$ $-0.022$ $-1.37E.01$ 69 $-6.66.01$ $-2.152$ $-1.37E.01$ 616089 $-6.66.01$ $-2.152$ $-1.37E.01$ 616089 $-6.602$ $-2.152$ $-1.37E.01$ 616089 $-6.602$ $-2.152$ $-2.152$ 61	WT031-G	e	8	L	42.5				
H381449326E-032.487 $4$ 214431.10E-02-1.960 $4$ 314421.10E-02-1.960 $2$ 214421.10E-02-1.960 $2$ 214472.40E-032.2619 $4$ 2144.72.40E-032.3218 $4$ 2141.11.28E-032.8619 $4$ 2141.11.28E-032.961 $4$ 312.00E-010.0371.30E-01 $4$ 8141.19.56E-032.861 $4$ 9141.19.56E-032.967 $2$ 9141.19.56E-032.861 $2$ 9143.67.99E-032.892 $2$ 9143.67.99E-032.997 $3$ 9144.19.56E-010.037 $61 \logs$ 144.19.56E-010.037 $61 \logs$ 144.19.56E-032.137E-01 $61 \logs$ 1144.19.56E-03 $61 \logs$	WT031-H	2	8	1	41.6				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	WTD31-H	6	8		44.9				
3         6         1         43.2         1.10E-02         -1.960           2         2         1         44.2         1.10E-02         -1.960           3         8         1         44.2         1.10E-02         -1.960           3         2         1         44.7         2.40E-03         -2.619         -           4         2         1         44.7         2.40E-03         -2.619         -         -           3         8         1         44.7         2.40E-03         -2.619         -         -         -           4         8         1         44.7         2.40E-03         -2.619         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>WTGED</td><td>4</td><td>2</td><td></td><td>44.8</td><td>3.26E-03</td><td>-2.487</td><td></td><td></td></td<>	WTGED	4	2		44.8	3.26E-03	-2.487		
4         8         1         44.2         1.10E-02         -1.960           2         2         1         42.4         6.06E-04         -3.216           3         2         1         42.4         6.06E-04         -3.216           4         2         1         44.7         2.40E-03         2.619           3         8         1         44.1         1.28E-03         2.802           4         8         1         43.1         1.28E-03         2.802           2         6         1         43.1         1.28E-03         2.802           2         6         1         43.1         1.28E-03         2.802           3         9         1         43.1         1.28E-03         2.802           3         9         1         43.1         1.28E-03         2.802           3         9         1         43.6         7.99E-03         2.802           3         9         1         43.6         7.99E-03         2.802           3         9         1         1.28E-03         2.097         3.37E-01           6         1         40.8         9.60E-01         0.037	WT053	6	8		43.2	1.10E-02	-1.960		
2         2         1         42.4         6.06E.04         -3.218	WT053	• 4	8		44.2	1.10E-02	-1.960		
3         2         1         43.6         2.40E-03         -2.619           4         2         1         44.7         2.40E-03         -2.619           3         8         1         44.7         2.40E-03         -2.619           4         2         1         44.7         2.40E-03         -2.619           4         8         1         41.1         1.28E-03         -2.892           4         8         1         43.1         1.28E-03         -2.892           2         9         1         43.1         1.28E-03         -2.892           3.7E-03         2         9         1         43.1         1.28E-03         -2.097           3.7E-03         9         1         43.1         9.56E-01         -0.037         1.37E-01           9         9         1         44.1         9.56E-01         -0.022         1.37E-01           9         1         9.56E-01         -0.022         1.37E-01         -2.152           9         1         9.56E-01         -0.022         1.37E-01         -2.152           9         1         9.56E-03         -2.152         -2.152         -2.152	WT054	~	2		42.4	6.06E-04	-3.218		
4         2         1         44.7         2.40E-03         2.619         2         2           3         8         1         41.1         1.28E-03         2.892         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2	WT055	- m	2		43.6	2.40E-03	-2.619		
3         8         1         41.1         1.28E-03         -2.892           4         8         1         43.1         1.28E-03         -2.892           2         5         1         43.1         1.28E-03         -2.892           3         9         1         43.1         0.037         1.30E-01           3         9         1         44.1         9.50E-01         -0.022         1.37E-01           of logs         1         44.1         9.50E-01         -0.022         1.37E-01           of logs         1         1         9.50E-01         -0.022         1.37E-01           of logs         1         1         44.1         9.50E-01         -0.022         1.37E-01           of logs         1         1         9.50E-01         -0.022         1.37E-01         1.30E-03           size         1         1         9.50E-01         0.022         1.37E-04	WT055	4	2		44.7	2.40E-03	-2.619		
4         8         1         43.1         1.28E-03         -2.892           4         8         1         43.1         1.28E-03         -2.097         3.37E-03           2         5         1         43.6         7.99E-03         -2.097         3.37E-03           3         9         1         40.8         9.18E-01         -0.037         1.30E-01           4         9         1         44.1         9.50E-01         -0.022         1.37E-01           9         1         0         1         9.50E-01         -0.022         1.37E-01           9         1         1         0         -0.022         1.37E-01         -           9         1         0         0         0         0         0         0           9         1         0         -0         -0.037         1.37E-01         -         - <td>WT056</td> <td>3</td> <td>8</td> <td></td> <td>41.1</td> <td>1.28E-03</td> <td>-2.892</td> <td></td> <td></td>	WT056	3	8		41.1	1.28E-03	-2.892		
4         8         1         43.1         3.37E-03         3.37E-03         3.37E-03         3.37E-03         3.37E-03         3.37E-03         3.37E-03         3.37E-03         3.37E-03         1.30E-01         0.037         1.30E-01         0.037         1.30E-01         0.037         1.30E-01         0.0037         1.30F-01         0.0037         0.012         0.137E-01         0.0037         0.0037         0.012         0.012         0.012         0.012         0.012         0.0137         0.012         0.012         0.012         0.012         0.011         0.022         0.011         0.022         0.012         0.012         0.012         0.012         0.013         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012 <t< td=""><td>WT056</td><td>4</td><td>8</td><td>-</td><td>43.1</td><td>1.28E-03</td><td>-2.892</td><td></td><td></td></t<>	WT056	4	8	-	43.1	1.28E-03	-2.892		
2         5         1         43.6         7.99E-03         -2.097         3.37E-03           3         9         1         40.8         9.18E-01         0.037         1.30E-01           9         1         40.8         9.18E-01         0.037         1.30E-01           95         1         44.1         9.56E-01         0.022         1.37E-01           95         1         0.022         1.37E-01         1.37E-01           95         1         1         9.56E-03         -2.152         1.37E-01           1 std dev         8.96E-04         1.9         1.9         4.37E-04         1.9           1 std dev         5.54E-02         3.36E-02         3.36E-02         3.31E-02         3.31E-02	WT057	4	œ	+	43.1				
3         9         1         40.8         9.18E-01         -0.037         1.30E-01           1         4         9         1         44.1         9.50E-01         -0.022         1.37E-01           1         2         1         37E-01         -0.022         1.37E-01         -0.022           1         2         1         37E-01         -0.022         1.37E-01         -0.022           0         8         1         2         -2.152         -2.152         -2.152           0         8         96E-04         -0.0896         -2.152         -2.152         -2.152           1         1         9         -2.152         -2.152         -2.152         -0.036           1         1         1         1         -2.152         -2.152         -0.136         -2.152           1         1         1         1         -2.152         -2.152         -0.15         -0.15           1         1         1         1         -2.152         -2.152         -0.15         -0.15           1         1         1         1         -2.15         -2.15         -0.15         -0.15           1         1         <	WT061	2	5	-	43.6	7.99E-03	-2.097	1	-2.4/2
4         9         1         44.1         9.50E-01         -0.022         1.3/E-01           Jgs         2         2         2         1.3/E-01         2           Jgs         2         2         2         1.3/E-01         2           Jgs         2         2         2         1.3/E-01         2           Jgs         2         2         2         2         2           Jstd dev         8.96E-04         19         4.37E-04         1           1 std dev         5.54E-02         3.80E-03         3.80E-03         3.80E-03	WT078	6	6	-	40.8	9.18E-01	-0.037		0.050
Image         -2.152         -2.152           Image         -2.152         -2.152           Image         0.896         -1.1           Image         1.3         -1.1           Image         1.3         -1.3           Image         3.80E-03         -1.3           Image         3.31E-02         -1.3	WT078	4	6	-	44.1	9.50E-01	-0.022		-0.803
Jgs         -2.132           gs         0.896           -1 std dev         8.96E-04           7.05E-03         3.80E-03           + 1 std dev         5.54E-02							5 U F C		000 6-
gs         U.896           - 1 std.dev         8.96E-04           - 7.05E-03         4.37E-04           + 1 std dev         5.54E-02	average of logs						701 7-		
-1 std. dev         8.96E-04         4.37E-04           - 1 std. dev         8.96E-03         3.80E-03           + 1 std dev         5.54E-02         3.31E-02	std.dev of logs						0.034		
- 1 std. dev         8.96E-04           7.05E-03         7.05E-03           + 1 std dev         5.54E-02	sample size						2		
+ 1 std dev 5.54E-02	-		8.96E-04					4.3/E-U4	
+ 1 std dev 5.54E-02	geom mean	5	7.05E-03					0.00E-00	
	<del>~</del> +		5.54E-02					20-310.0	

Table A.5 - Individual data points - Unstable - 40-45 mph

Site	in Soil group	Run Soil group Disturbed / Un yes = 1, no	Instable Extrapolated 0 = 0 10-meter velocity (mph)	olated eter (moh)	cumulative spike-corrected flux (ton/acre/hr)	log10(flux)	cumulative spike mass (ton/acre) (ton/acre)	log10(spike mass)
	8		48.7	7	3.72E-02	-1.430	9.55E-03	-2.020
WT019	2	-	46.3	e	8.82E-03	-2.055	3.08E-03	-2.511
WT020	8	-	45.1	L	2.31E-03	-2.637	8.20E-04	-3.086
WT021 3	2	<b>+</b>	47.9	6	4.26E-03	-2.371	1.68E-03	-2.774
WT022	2	-	45.3	9	1.46E-03	-2.837	4.44E-04	-3.352
	9	~	47.5	5	5.08E-02	-1.294	6.25E-03	-2.204
-	8 8	-	47.2	2	3.45E-02	-1.463	1.40E-02	-1.852
	8	-	47.9	6			a an	
WT031-C	8 8	-	47.7	7				
WT031-D	8		47.1	-				
WT031-E	8	~	49.5		وموالي المراجع المراجع المراجع المراجع والمراجع والمراجع المراجع			
WT031-F	3 8 8	-	48	5				
WT043	3 2	L	45.9	<b>б</b> .	1.14E-01	-0.942	1.27E-02	-1.890
WT050	3 2	+	45.3	e	3.26E-03	-2.487		
						-1.946		-2.462
						0.679		0.565
sia.uev ol logs campa size						6		80
reom mean - 1 std dev					2.37E-03		9.40E-04	
	-				1.13E-02		3.45E-03	
geom mean + 1 std dev					5.41E-02		1.27E-02	

Table A.6 - Individual data points - Unstable - 45-50 mph

e spike Vacre) tre) log10(spike mass)			-04 -3.210							-03 -2.118		-2.346	0.498	ñ	-03	-03	-02
cumulative spike mass (ton/acre) contornux	-1.083 1.15E-02	-1.611 5.40E-03	-2.637 6.16E-04				-3.218	-3.218	-1.705 6.34E-03	-1.561 7.63E-03		-2.147	0.865	7	1.43E-03	4.50E-03	1.42E-02
spike-corrected		2.45E-02	2.31E-03				6.06E-04	6.06E-04	1.97E-02	2.75E-02					9.71E-04	7,12E-03	5 22E-02
nstable Extrapolated o = 0 10-meter	54 B	51.2	53.5	50.4	54.2	52.7	52.7	53.9	53.4	54.5							
Disturbed / Unstable yes = 1, no = 0		-			-	-				1	مراجع والرابية والمسارحة والمستحد والمحام والمحام والمحام والمحام والمحام والمحام والمحام والمحام والمحام والم						
Run Soil group Disturbed / U yes = 1, n	a		2	8	8	80	2	2	1 (7	5							
			W1019 3	WT031-C	WT031-D 2	WT031-E 3	WT054 3	WT054 4	WITCH 3	-		average of logs	std dev of locs	sample size	sumpto uno		

Table A.7 - Individual data points - Unstable - 50-55 mph

d mph
- 55-0
nstable
nts - UI
ata poi
idual d
- Individ
le A.B
Tab

Site	Run So	ll group	Run Soll group Disturbed / Unst yes = 1, no =	stable • 0 • 0	stable Extrapolated = 0 10-meter velocity (moh)	cumulative spike-corrected flux (tomacre/hr)	log 10(flux)	cumulative spike mass (ton/acre) (ton/acre) [16	log 10(spike mass)
VT020	e E	80			55.7	3.69E-03	-2.433	1.30E-03	-2.885
NT031-D	3	8	-		59.6				
							FEA C-		-2.885
average or rogs etd dev of lone							#DIV/0		;0//\IC#
sample size							-		
geom mean - 1 std.dev						i0///IC#		i0//IC#	
deom mean						3.69E-03		1.30E-03	
geom mean + 1 std dev						i0//IC#		10//IC#	

		-3.398
cumulative spike mass (ton/acre) (ton/acre)		
		0140
cumulative spike corrected	IIIIA (LURAURAUS	
Extrapolated 10-meter	velocity (mpm)	
turbed / Unstable yes = 1, no = 0		
Soi group Dis		
B		

	un M	Soil group	Run Soil group Disturbed / Unstable yes = 1, no = 0	stable Extrapolated = 0 10-meter valocity (moh)	spike-corrected	loa10(flux)	cumulative spike mass (ton/acre) (ton/acre)	log10(spike mass)
	•	c	0		1.95E-03	-2.710		-3.398
	-							
autorace of love						-2.710		-3.398
						10//IC#		i0//10#
						-		**
sample size					;0//IC#		#DIV/0i	
deom mean					1.95E-03		4.00E-04	
geom mean + 1 std dev					i0//IC#		i0//IC#	

Table B.0 - Individual data points - Stable - 15-20 mph

Site	Run	Soil group	Run Soil group Disturbed / Unstable yes = 1, no = 0	Instable Extrapolated 0 = 0 10-meter velocity (mph)	spike-corrected flux (ton/acre/hr)	(xnli)0Eool	cumulative spike mass (ton/acre) (ton/acre)	log10(spike mass)
WT002	-	9	0	22.3	1.61E-03	-2.794	6.56E-05	-4.183
WT010	2	8	0	24.5	1.06E-02	-1.975	2.64E-03	-2.579
WT048	-	2	0	21.9	5.04E-04	-3.298		
WT049	-	2	0	21.1	4.29E-04	-3.368	5.53E-05	-4.257
average of logs		average				-2.859		-3.673
std.dev of logs		std.dev				0.642		0.948
sample size						4		9
geom mean - 1 std.dev					3.16E-04		2.39E-05	
geom mean					1.38E-03	_	2.12E-04	
geom mean + 1 std dev					6.07E-03		1.88E-03	

Table B.1 - Individual data points - Stable - 20-25 mph

0j.Boj	-3.287	-2.349 7.69E-04 -3.114	-2.223 1.01E-03 -2.997			-2.267 1.36E-03 -2.865			-2.890 8.28E-05 -4.082	-2.581 2.51E-04 -3.601		-	-2.983 1.15E-04 -3.939	-2.598 6.32E-04 -3.199	-2.689 2.37E-04 -3.626		 	0.5		1.52E-04	1.52E-04 4.90E-04
Extrapolated cumulative 10-meter spike-corrected velocity (mph) flux (ton/acre/hr)		27.7 4.48E-03	28.9 5.98E-03		25.9 1.90E-02	28.3 5.41E-03	25.7	29.6	25.3 1.29E-03	28.5 2.62E-03	27.2	25.4 1.27E-03				-				9.46E-04	9.46E-04 2.57E-03
Run Soil group Disturbed / Unstable yes = 1, no =0	3	, v	2 0 c	8 0	6	é 0	2 0	2 0		2		o									
					MT011	WTD3R	WT035	WT035								0/01A	average of logs	std.dev of logs	std.dev of logs samole size	std.dev of logs sample size	std.dev of logs sample size geom mean - 1 std.dev

Table B.2 - Individual data points - Stable - 25-30 mph

MT006       Statistica         WT007       1         WT011       2         WT026       1         WT026       1         WT026       1         WT028       2         WT035       3         WT038       1         WT038       1         WT038       1         WT044       1	Ø	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10-meter	Spike-corrected			
	œ		velocity (mph)	flux (ton/acre/hr)		(TON/ACIC)	log10(spike mass)
		0	31.8	8.99E-03	-2.046	2.65E-03	-2.576
	5	0	34.5	3.51E-04	-3.455	6.85E-05	-4.164
	9	0	33.6	1.92E-01	-0.716	7.25E-03	-2.140
	9	0	33.5	1.80E-03	-2.745	4.78E-04	-3.321
	9	0	31.4	1.40E-02	-1.854	2.72E-03	-2.566
	2	0	34.3				
	2	0	33.2	3.59E-04	-3.445	3.33E-04	-3.478
	2	0	30.3	2.20E-03	-2.657	4.23E-04	-3.373
	2	0	33.4	5.44E-03	-2.264	1.12E-03	-2.950
WT048 3	2	0	30.2	2.09E-03	-2.679	2.23E-04	-3.653
	2	0	34.2	6.60E-03	-2.181	1.31E-03	-2.883
	8	0	33.5	4.46E-03	-2.351	1.55E-04	-3.811
	8	0	30.9	6.50E-04	-3.187		
WT058 1	6	0	32.8	4.71E-03	-2.327	9.51E-04	-3.022
WT059 1	6	0	34.7	1.49E-03	-2.826	7.09E-05	-4,149
WT060 2	6	0	30.4	3.39E-03	-2,470	7.90E-04	-3.103
	S	0	30.9	3.95E-03	-2.403	1.50E-03	-2.825
WT066 1	6	0	34.9				
WT068	2	0	33.1	3.96E-03	-2.402	5.73E-04	-3,242
	5	0	32.5	1.64E-02	-1.784	3.91E-03	-2.408
	5	0	34.3	9.29E-04	-3.032		-3.591
WT072 1	7	0	32.1	3.63E-03	-2.440		-3.245
WT074 1	2	0	31.9	5.60E-04	-3.252		4.209
WT076 2	6	0	33.7	6.89E-03	-2.162		-3.292
WT077 1	6	0	32.5	1.52E-03	-2.819	8.30E-04	-3.081
					0 EOD		-3 231
average or logs							0.550
std.dev of logs					n:eu/		00.00
sample size					23		77
geom mean - 1 std.dev				7 81E-04		1.62E-04	
geom mean				3.16E-03		5.88E-04	
geom mean + 1 std dev				1.28E-02		2.14E-03	

Table B.3 - Individual data points - Stable - 30-35 mph

Table B.4 - Individual data points - Stable - 35-40 mph

Steand	2 2	Run Soil group	Disturbed / Unstable yes = 1. no = 0	Extrapolated 10-meter	spike-corrected		mass (tonacre)	loc 10(spike mass)
Statistics				velocity (mph)	TUX (TONACIA/III)			
WT004	 	8	0.4	57.0 9.7.6	1 78E_07	-1 748	5.97E-03	-2.224
WT006	~	D		0.00	a 17E-02	-1 499	7.60E-03	-2.119
WT006	ຕຸດ	τ C	<b>-</b>	35.0	2145-04	3.670	5.64E-05	4.249
W1008	7	0 0		206	1 16E-03	-2 934	2.58E-04	-3.588
WT008	<del>،</del> دو	οœ						
800 M		οα		35.7	1.50E-02	-1.825	3.29E-03	-2.483
W1010	<b>-</b>	о с	, c	35.4	1.66E-03	-2.781	9.21E-04	-3.036
V IUIZ	-   -	4α		37.4	4.16E-03	-2.381	1.43E-03	-2.844
W1014		) 	, o	37.9	1.55E-03	-2.810	5.88E-04	-3.231
CIUL W	-   -	<b>ء</b> اد		37.3	2.62E-03	-2.581	2.71E-03	-2.567
1010	- 0	1 4		38.4	4.23E-03	-2.374	1.62E-03	-2.792
0701M	<b>ب</b> ا <del>،</del>	o u		38.2	1.36E-03	-2.861	1.19E-03	-2.924
W IUZ/	- «	o u		36.2	1.87E-02	-1.729	5.14E-03	-2.289
W1028	2	o (		37.7	1.55E-03	-2.810	5.46E-04	-3.263
W1038	۷	4 C		37.1	5.85E-03	-2.233	1.25E-03	-2.904
W 1040	-	<b>v</b> c		39.3	1.13E-03	-2.948	4.87E-04	-3.313
W1042	-   0	v c		36.95	7.79E-03	-2.109	2.74E-03	-2.562
W 1 044	2	να		37.0	6.50E-04	-3.187		
	4.0	o	, -	37.9	7.52E-03	-2.124	1.37E-03	-2.865
	<b>-</b>	, <b>u</b>		39.9	2.12E-03	-2.674	7.16E-04	3,145
	-   -	b u		37.8	1.46E-03	-2.834	3.46E-04	-3.461
	-	2		35.1	1.64E-03	-2.785	5.01E-04	-3.300
W 1004	- : c	o u		36.8	9.88E-03	-2.005	2.52E-03	-2.598
001 M	4			30.7			a manana a manana a manana da kata kata kata kata kata kata kata	
W 1066	N •	D		37.7	2.74E-03	-2.562	3,09E-04	-3.510
W 100/	- (	7		37.9	8.79E-03	-2.056	1.586-03	-2.801
	<b>v</b> <del>-</del>		) C	39.0	1.26E-03	-2.901	1.69E-04	-3.773
VV LUCO	- ^	. ~		37.3	1.26E-03	-2.898		-3.689
WI UT	• -	. o	0	38.4	7.30E-04	-3.137	3.27E-04	-3.485
WT077	~ ~	თ	0	38.6	5.83E-03	-2.234	1.21E-03	-2.916
								2 034
average of logs						-2.525		
etd day of lone						0.513		71C.U
siu der of togo samne size	-					28		77
com mean - 1 std dev					9,17E-04		2.84E-04	
-					2.99E-03		9.24E-04	
					9.73E-03		3.01E-03	

Table B.5 - Individual data points - Stable - 40-45 mph

Ste.	Unu L	un soll group	Disturbed / Unstable	Unstable	Extrapolated	cumulative entre-corrected		cumulative spike mass /tco/acre)	
				2	velocity (mph)	flux (ton/acre/hr)	(xuf)0[pot	(ton/acre)	iog10(spike mass)
WT003	-	9	o		43.3	1 22E-03	-2.912	2.24E-04	-3.650
WT004	2	8	0		44.7				
WTMA	•	8	0		42.3				
Artinio			0		41.5	4.70E-03	-2.328	2.49E-03	-2.604
WT014	• •		0		40.6	7.47E-03	-2.127	2.45E-03	-2.611
WT017	1.0	0			43.8				
MTD3	-	1	0		41.3	2.20E-03	-2.657	3.44E-03	-2.463
WTDA			c		44.2	9.12E-03	-2.040	2.71E-03	-2.566
	, c	) 4			130	3 67F-03	-2.442	1.99E-03	-2.702
102/	4	0		1		1 215 03	296.0	6 14F-04	-3.212
W1030		0 1			7.7		7 643	4 20E-03	CCP C-
WT033	-	0		1	44.1	2,201-00		4 00E 00	717 C
WT034	-	61	•		41.6	6.46E-U3	NGL'7-	1.945-03	11.7.
WT036	-	7	0		42.7	3.04E-03	-2.518	1.73E-03	-2.761
WT038	e	2	0		41.5	2.55E-03	-2.593	9.51E-04	-3.022
WTD30	-		•		43.8	2.16E-03	-2.666	8.52E-04	-3.070
WTDAD	•			-	40.6	4.14E-02	-1.383	3.35E-03	-2.475
	• *		, c		44.8	4 80E-02	-1.319	5.53E-03	-2.258
	) <del>,</del>				C C F	3 09F-03	-2.510	1.556-03	-2.809
V/1041			• • •			3 FAF-03	-2 446	3.11E-03	-2.507
		ч (			۶ ۴	1 015-03	0.7 2	5 135-04	-3.290
W 1 U40		1				2 815-03	2 551	1.48F-03	-2.830
W104/						1 275 03	1 881	7 28E-03	-2 647
WT047	~	~ (			44.1	0 765 03		0.05F_04	3012
	ייתי 	0			-	1 165 00		1 765 03	000 0
WT051	4	8		-	C.14	1.205-02	105.1-	70-107,1	
WT052	m	80	o:		44.4	6.50E-04	-3.18/		2 0E1
WT058	~4	0	•		<b>4</b> 1.3	9.82E-03	-2.008	2.21E-03	069.7-
WT059	2	0	0		40.8	3.07E-03	-2.512	2.87E-04	-3.542
WT060	4	6	0		41.3	9.03E-03	-2.044	1.67E-03	-2.777
WT064	7	Ŷ	0		43.9	4.01E-03	-2.397	1.10E-03	-2.960
WT068	m	2	•		41.4	7.60E-03	-2.119	1.06E-03	-2.975
WT068	4	8	0		44.8	9.90E-03	-2.004	1.54E-03	-2.813
WT069	M	L LO	0		41.9	4.11E-02	-1.386	1.83E-02	-1.737
WT069	4	'n	•		44.4	5.42E-02	-1.266	2.19E-02	-1.659
WT070	<b>`</b>	10	0		41.2	3.05E-03	-2.516	9,98E-04	-3.001
WT073		, <u>, , , , , , , , , , , , , , , , , , </u>	0	· · ·	44.4	5.54E-03	-2.257	5.79E-04	-3.238
WT076	e en	0	0	:	41.0	8.81E-03	-2.055	1.61E-03	-2.794
WT077	(m)	o	0		44.7	1.82E-02	-1.740	6.90E-03	-2.161
average of logs							-2.228		-2.769
std.dev of logs							0.453		0.425
sampie size							¥		33
geom mean - 1 std.dev	>					2.08E-03		6.40E-04	
Geom meen	 					5.92E-03		1.70E-03	
						1 685-02		4 53F-03	

Table B.6 - Individual data points - Stable - 45-50 mph

		d no	Disturbed / Unstable vas = 1 no = 0	Extrapolated 10-meter	spike-corrected		cumulative spike mass (ton/acre)	
Statictics.				velocity (mph)	flux (ton/acre/hr)	(xul1)(flux)	(ton/acre)	log10(spike mass)
	<b>^</b>	6	0	45.8	5.69E-03	-2.245	1.50E-03	-2.823
WT004		6	0	46.6				
WTM7		- <b>u</b> n	0	46.9	3.14E-03	-2.502	1.07E-03	7/R7-
	( (et	1.0	0	49.9	4.85E-03	-2.314	1.44E-03	-2.842
VALTONO		0 00	0	47.8				
	) (r	2	o	49.0	1.09E-02	-1.963	3.39E-03	-2.470
W1012	י י י	4 a		45.8	1.63E-02	-1.788	4.15E-03	-2.381
W1014	<b>°</b> (	0.0	) C	45.5	3.47E-03	-2.459	1.06E-03	-2.976
CLOIM	ч r			48.6	1.96E-02	-1.707	5.45E-03	-2.264
W1023	*	0   C		18.0	5 04E-03	-2.298	3.17E-03	-2.499
c201M	- '	1 9	> <	49.1	9 08E-03	-2.042	4.20E-03	-2.376
W102/	<b>n</b> (	D U		47.4	6 22E-03	-2.206	2.07E-03	-2.683
W1033	<b>N</b> (	0		16.7	2 62F_02	-1.581	3.74E-03	-2.427
WT034		7		A OA	8.47E-03	-2.072	3.17E-03	-2.499
W1030	<b>v</b>  •	1		45.0	2 92E-03	-2.535	1.63E-03	-2.788
W1U3/	- (r	N (C		49.6	6.02E-03	-2.221	1.27E-03	-2.698
W1039	ч с	v   c		48.6	9.49E-03	-2.023	2.34E-03	-2.631
W1041	<b>v</b> (	۳. r		48.1	5.68E-03	-2.246	1,40E-03	-2.854
W1040	N (0	0 r		687	3.07E-02	-1.512	2.26E-03	-2.647
W 104/	י י	~ 0		46.1	6.50E-04	-3.187		
7001 M	4 (	ם ע	> c	46.4	4.10E-03	-2.387	3.21E-03	-2.494
790 M	4 0	4		46.8	1 28E-02	-1.892	8.76E-04	-3.058
WT063	N (	0	<b>-</b>	2.24	1 51E_DD	-1820	3.58E-03	-2 446
WT065	<b>m</b>	n	<b>-</b>		2 205 00	1 658	5 99F-03	-2 223
WT065	4	ß	0	47.5	714717	2001-	0.001	
WT066	e	9	0	46.9			1 205 01	1 261
WT067	2		0	46.9	4.40E-03	0C5.7-		
WT072	ന	7	0	45.2	1.87E-02	-1./29	-	×10 c
WT072	4	7	0	48.3	2.36E-02	-1.627	9.68E-03	410.7-
WT074	e	~	0	45.9	2.34E-03	-2.631		100.0-
WT074	4	7	0	49.1	<b>3.59E-03</b>	-2.445	1	500.C-
wm75	~	ີ ອີ	0	47.3	2.18E-03	-2.662		191.5-
WTD76	7	6	0	45.1	9.43E-03	-2.025		AAG.7-
MTD77	7	σ	0	47.9	3.29E-02	-1.482	9.32E-03	-2.031
	-							
average of Ime						-2.121		809.7-
average ur ingo						0.399		0.361
SIGUEV OF 100%						8		59
					3.02E-03		9.57E-04	
•					7.58E-03		2.20E-03	
					1 90E-02		5.05E-03	

	0	Soil avoin	Dun Soil avour Disturbed / []	Instable	Extrapolated	cumulative		cumulative spike	
puq	2		yes = 1, 1	0 = 0u		spike-corrected		mass (ton/acre)	
Statistics					velocity (mph)	flux (ton/acre/hr)	log10(flux)	(ton/acre)	100 I OLE DIVE LUNC
WT001	0	e	0		52.9	7.40E-03	-2.131	2.82E-03	240 C
WT003	2	6	0		50.0	5.87E-03	-2.231	1.33E-03	1/0.7-
N/T003	i e	9	0		51.3	8.75E-03	-2.058	2.40E-03	-7:070
WT015	9 00	5	0		53.1	5.07E-03	-2.295	1.81E-03	-2.742
WT017	3	2	0		50.5				
WT025		2	0		53.2	1.78E-02	-1.750	5.72E-03	-2.242
WT030		9	0		50.1	9.18E-03	-2.037	1.02E-03	-2.990
WTD33	1 (7)	2	0		52.6	1.05E-02	-1.978	2.81E-03	-2.551
10/T034			0		52.4	5.76E-02	-1.240	8.91E-03	-2.050
WT027	6	- 0	0		50.9	1.17E-02	-1.932	2.38E-03	-2.624
NVT04	1 0	10	0		53.6	1.31E-02	-1.884	3.76E-03	-2.425
14/10/10 14/10/10	0	•	0		54.7	7.96E-03	-2.099	8.44E-04	-3.074
VV 1042	10	10			50.5	7.16E-03	-2.145	4.78E-03	-2.321
VV 1043	10	1 0			52.4	7.53E-03	-2.123	4.39E-03	-2.358
VV 1 040	າຕ				50.4	1 73E-02	-1.763	4,56E-03	-2.341
801 M	n <	» 0			516	2.66E-02	-1.575	5.06E-03	-2.296
801 M	1 0	<b>b</b> C			52.4	4.25E-03	-2.372	5.81E-04	-3.236
W1099	<b>~</b>	סמ			57.6	5 77E-03	-2 239	7,60E-04	-3.119
WT059	4	<b>5</b> ) L			24.0	8 57E-03	-2 069	4 76E-03	-2.323
WT064	<u></u>	0				1 50E_00	1 874	5 28F-03	-2.278
WT064	4	٩	D		04.0	1.305-02			
WT066	4	9	0		50.5	CC 11.		2 ETE 02	-2 591
WT070	3	2	0		50.1	1.40E-02		2.015-03	-2 523
WT070	4	5	0		51.4	2.0/E-UZ	+00.1-		2.873
WT073	e	7	•		53.0	1,43E-02	-1.846	1.5UE-U3	C40.2-
		00000000					-1.960		-2.589
average or logs		avelayo					0 266		0.327
std.dev of logs		std.dev					22		22
1						5 04E.N3		1.21E-03	
geom mean - 1 std.dev	-					4 405 00		2 58E-03	
geom mean						1.105-02		E. ORE OR	
geom mean + 1 std dev						Z.UZE-UZ		0.496-00	

Table B.7 - Individual data points - Stable - 50-55 mph

4.89E-02       -1.311       7.05E-03         1.19E-02       -1.311       7.05E-03         3.78E-02       -1.423       9.54E-03         3.78E-02       -1.423       9.54E-03         3.78E-02       -1.423       9.54E-03         1.37E-02       -1.862       1.96E-03         1.37E-02       -1.862       1.80E-03         1.37E-02       -1.862       1.80E-03         1.37E-02       -1.862       1.80E-03         1.55E-02       -1.810       7.46E-03         1.55E-02       -1.789       8.11E-03         1.55E-02       -1.743       3.78E-03         1.81E-02       -1.743       3.78E-03         2.255E-03       -1.773       9.78E-04         6.35E-03       -1.773       9.78E-03         6.22E-03       -2.107       0.271         0.271       0.271       1.716-03         1.66E-02       1.776-03         3.78E-03       1.76E-03         6.22E-03       -2.206       1.77E-03         9.03E-03       1.773       1.51E-03         3.75E-03       3.32E-03       3.32E-03         3.75E-03       3.25E-03       3.25E-03	Site	Run Soi	dnoıg II	Run Soil group Disturbed / Unstable yes = 1, no = 0	instable Extrapolated o = 0 10-meter	spike-corrected		cumulative spike mass (ton/acre) (ton/acre)	log 10(spike-mass)
3     5     0     56.9     1.19E-02     -1.924     1.98E-03       3     2     0     56.1     3.78E-02     -1.423     954E-03       3     2     0     56.3     2.87E-02     -1.423     954E-03       3     2     0     56.3     1.37E-02     -1.423     954E-03       3     2     0     56.3     1.37E-02     -1.462     1.80E-03       3     5     0     56.3     1.57E-02     -1.769     8.11E-03       3     5     0     57.6     1.56E-02     -1.789     8.11E-03       3     5     0     55.8     6.35E-03     -1.743     3.78E-03       3     4     7     0     55.8     6.35E-03     -1.743       3     9     0     55.8     6.35E-03     -1.743     3.78E-03       3     1     56.0     2.26E-03     -1.743     3.78E-03       3     9     0     57.7     6.32E-03     -1.743     3.78E-03       3     9     0     57.7     6.22E-03     -1.743     3.78E-03       3     9     0     57.7     6.22E-03     -1.743     3.78E-03       3     10     57.7     6.22E-03	Statistics	ſ	4			4 89E-02	-1.311	7.05E-03	-2.152
3     2     0     56.1     3.78E-02     -1.423     9.54E-03     -       3     2     0     55.8     2.87E-02     -1.542     5.87E-03     -       3     2     0     55.8     2.87E-02     -1.542     5.87E-03     -       3     2     0     55.8     1.37E-02     -1.862     1.80E-03     -       3     2     0     56.9     1.55E-02     -1.810     7.46E-03     -       3     5     0     59.2     1.55E-02     -1.810     7.46E-03     -       3     5     0     59.2     1.55E-02     -1.811     7.46E-03     -       3     5     0     55.8     6.558     6.556-02     -1.743     3.76E-03       3     9     0     0     55.0     2.35E-03     -1.647     2.08E-03       3     9     0     0     57.7     6.225E-03     -1.743     3.76E-03       60 logs     1     3     9     0     0     57.7     6.225E-03     -1.647       3     9     0     0     57.7     6.225E-03     -1.647     2.08E-03       61 logs     1     1.647     2.086     0.7     0.271 <td< td=""><td>W1023</td><td>200</td><td>0 4</td><td></td><td>56.9</td><td>1.19E-02</td><td>-1.924</td><td>1.98E-03</td><td>-2.702</td></td<>	W1023	200	0 4		56.9	1.19E-02	-1.924	1.98E-03	-2.702
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W I USU	0 6	5	, C	56.1	3.78E-02	-1.423	9.54E-03	-2.020
3     2     0     56.2     1.37E-02     -1.862     1.80E-03       3     2     0     56.8     1.55E-02     -1.810     7.46E-03       3     5     0     59.2     1.55E-02     -1.810     7.46E-03       3     5     0     57.6     1.55E-02     -1.810     7.46E-03       3     5     0     57.6     1.56E-02     -1.810     8.11E-03       4     7     0     55.8     1.81E-02     -1.743     3.78E-03       3     5     0     55.8     6.35E-03     -2.197     9.78E-04       3     9     0     55.8     6.35E-03     -2.167     9.78E-04       4     7     0     55.8     6.35E-03     -1.743     3.78E-03       61 logs     1     2.06E-03     -1.743     3.78E-03       61 logs     1     0     0     57.7     6.22E-03     -1.773       61 logs     1     0     0     57.7     6.22E-03     -1.773       61 logs     1     1     0.0271     1.77E-03     1.772       61 logs     1     1     0.0271     0.271     1.51E-03       62 log     1     0.0271     0.227     3.32E-03     1.22	VV 1030	2 9	• •	0	55.8	2.87E-02	-1.542	5.87E-03	-2.231
3     2     0     56.8     1.55E-02     -1.810     7.46E-03       3     5     0     59.2     1.62E-02     -1.789     8.11E-03       3     5     0     57.6     1.50E-02     -1.789     8.11E-03       4     5     0     57.6     1.50E-02     -1.789     8.11E-03       3     5     0     57.6     1.50E-02     -1.743     3.78E-03       3     6     55.8     6.35E-03     -1.743     3.78E-03       3     7     0     55.8     6.35E-03     -1.743     3.78E-03       3     9     0     57.7     6.25E-03     -1.647     2.08E-03       1     9     9     -1.773     9.78E-04     -1.773       1     1     6.22E-03     -1.647     2.08E-03       1     0     57.7     6.22E-03     -1.647     2.08E-03       1     0     0     57.7     6.22F-03     -1.773       1 <td></td> <td><u>ه</u> د</td> <td>10</td> <td>0</td> <td>56.2</td> <td>1.37E-02</td> <td>-1.862</td> <td>1.80E-03</td> <td>-2.745</td>		<u>ه</u> د	10	0	56.2	1.37E-02	-1.862	1.80E-03	-2.745
3     5     0     592     1.62E-02     -1.789     8.11E-03       3     5     0     57.6     1.50E-02     -1.824     1.55E-03       4     5     0     57.6     1.50E-02     -1.743     3.78E-03       3     5     0     56.8     6.36E-03     -1.743     3.78E-03       3     4     7     0     56.8     6.36E-03     -1.773       3     9     0     56.0     2.25E-02     -1.647     2.08E-03       3     9     0     56.0     2.25E-02     -1.773     2.08E-03       3     9     0     57.7     6.22E-03     -1.773     2.08E-03       3     9     0     56.0     2.25E-02     -1.647     2.08E-03       3     9     0     57.7     6.22E-03     -1.773     2.08E-03       5     1     6.22E-03     -1.647     2.08E-03     -1.776-03       5     0     0     57.7     6.22E-03     -1.647     2.08E-03       6     0     0     56.0     1.773     -1.773     -1.776-03       6     10     12     -1.773     1.51E-03     -1.516       6     1     0     0.271     0.271 </td <td>VV 1035</td> <td>2 0</td> <td>• [ ~</td> <td>0</td> <td>56.8</td> <td>1.55E-02</td> <td>-1.810</td> <td>7.46E-03</td> <td>-2.127</td>	VV 1035	2 0	• [ ~	0	56.8	1.55E-02	-1.810	7.46E-03	-2.127
3         5         0         57.6         1.50E-02         -1.824         1.55E-03           4         5         0         58.8         1.81E-02         -1.743         3.78E-03           3         4         7         0         56.8         6.35E-03         -1.743         3.78E-03           3         4         7         0         55.8         6.35E-02         -1.743         3.78E-03           3         9         0         0         55.8         6.35E-02         -1.743         2.08E-03           3         9         0         55.7         6.22E-02         -1.647         2.08E-03         -           5         3         9         0         57.7         6.22E-03         -2.206         1.77E-03         -           5         6         0         57.7         6.22E-03         -2.206         1.77E-03         -           5         6         0         0         57.7         6.22E-03         -1.773         0.271           5         6         0         57.7         6.22E-03         -1.773         0.271           5         6         1.5         0         0.271         0.271         1.51E-03	VV 1043	) (f	4 G	0	59.2	1.62E-02	-1.789	8.11E-03	-2.091
4         5         0         58.8         1.81E-02         -1.743         3.78E-03         -           3         7         0         55.8         6.35E-03         -2.197         9.78E-04         -           4         7         0         55.8         6.35E-02         -1.647         2.08E-03         -           3         9         0         56.0         2.25E-02         -1.647         2.08E-03         -           a follogs         3         9         0         57.7         6.22E-03         -2.206         1.77E-03         -           a folgs         57.7         6.22E-03         -2.206         1.77E-03         -         -           a folgs         1         0         57.7         6.22E-03         -1.773         -         -           a folgs         1         0         0.271         0.271         -         -         -         -           a folgs         1         0         0.271         0.271         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>WTD63</td> <td></td> <td>2</td> <td>0</td> <td>57.6</td> <td>1.50E-02</td> <td>-1.824</td> <td></td> <td>-2.809</td>	WTD63		2	0	57.6	1.50E-02	-1.824		-2.809
3     0     55.8     6.35E-03     -2.197     9.78E-04       3     7     0     56.0     2.25E-02     -1.647     2.08E-03       3     9     0     57.7     6.22E-03     -2.206     1.77E-03       9 flogs     0     57.7     6.22E-03     -2.206     1.77E-03       9 flogs     1     0     0.271     0.271       9 flogs     0     0     57.7     6.22E-03     -1.773       9 flogs     1     0.271     0.271     0.271       9 flogs     12     1.51E-03     1.51E-03       12     1.51E-03     3.32E-03       12     1.51E-03     3.32E-03       13     1.66E-02     3.32E-03		> <b>P</b>	2	0	58.8	1.81E-02	-1.743		-2.422
4         7         0         56.0         2.25E-02         -1.647         2.08E-03         -           3         9         0         57.7         6.22E-03         -2.206         1.77E-03         -           of logs         -         -2.206         1.77E-03         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td>- C</td> <td></td> <td></td> <td>55.8</td> <td>6.35E-03</td> <td>-2.197</td> <td>9.78E-04</td> <td>-3.010</td>		- C			55.8	6.35E-03	-2.197	9.78E-04	-3.010
3         9         0         57.7         6.22E-03         -2.206         1.77E-03         -           of logs         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.773         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03         -1.516-0.03	VV 1 007		L	0	56.0	2.25E-02	-1.647	2.08E-03	-2.683
std dev     -1.773     -1.773       std dev     0.271     0.271       std dev     0.271     12       3.32E-03     3.32E-03       3.4FE-07     7.29E-03	WT075	r m	6	0	57.7	6.22E-03	-2.206	1	-2.753
std.dev     -1.773     -1.773       std.dev     0.271     0.271       std.dev     3.32E-03     1.51E-03       std.dev     3.32E-03     3.32E-03       std.dev     3.4FE-07     7.29E-03									
std.dev         0.271         0.271           std.dev         12         1.51E-03           std.dev         3.32E-03         3.32E-03           std.dev         3.46E-07         7.29E-03	a second flowe						-1.773	3	-2.4/9
12 9.03E-03 1.69E-02 3.15E-07							0.271		0.342
9.03E-03 1.69E-02 3.15E-07	sta.dev of logs						12		12
1.69E-02 3.15E-07	sample size					9 03E-03		1.51E-03	
3 15F-02	geom mean - 1 std.dev					1 R9F-07		3.32E-03	
	geom mean					3 15E-02		7.29E-03	

Table B.8 - Individual data points - Stable - 55-60 mph

	Run	Soil group	Disturbed /	Unstable	Run Soil group Disturbed / Unstable Extrapolated	cumulative		cumulative spike	
		<b>D</b>			10-meter	spike-corrected		mass (ton/acre)	
					velocity (moh)	flux (ton/acre/hr)	log10(flux)	(ton/acre)	log10(spike mass)
	6	ſ			617	2.60E-02	-1.585	7.80E-03	-2 108
	2	4 0		-	60.7	9.62E-03	-2.017	1.67E-03	-2.778
W1042	2	14			60 1	2.52E-02	-1.599	9.89E-03	-2.005
W 1002	ŧ	0			60.7	1.21E-02	-1.918	2.04E-03	-2.691
	r								
							-1 780		-2.395
average of logs									0 305
std dev of loas							0.220		20.2
							4		4
	T					<u>9.99E-03</u>		1.62E-03	
geom mean - I studev						1 665 03		4 03E-03	
geom mean						1.001-02			
geom mean + 1 std dev						2./6E-02		1.002	

Table B.9 - Individual data points - Stable - 60-65 mph

### Section C - Statistical summary tables and figures, 1995 Unstable and Stable PM-10 cumulative fluxes and spikes

Tables C.1 through C.16 contain data on the samples sizes, geometric means and standard deviations for PM-10 emissions as fluxes in ton/acre/hour, and for PM-10 spikes, in ton/acre, from unstable lands and from stable native desert in the 1995 wind tunnel field study.

The geometric means and standard deviations in each wind speed category in Tables C.1-C.16 were extracted from the computational tables in Sections A and B of this report. Sample sizes are shown in the header of each table as n = x, where x is an integer value representing the number of records in the study that correspond to that particular classification.

Soil group	Unstable	Stable
All soils	<b>C</b> .1	C.2
Group 2	C.3	<b>C.4</b>
Group 3	C.5	<b>C</b> .6
Group 5	C.7	C.8
Group 6	C.9 *	C.10
Group 7	<b>C</b> .11*	C.12
Group 8	C.13	C.14
Group 9	C.15	<b>C</b> .16

Tables C.1-C.16 are organized in the following manner:

An asterisk(*) indicates that the table contains no data (the 1995 wind tunnel field study did not uniformly cover all soil groups and conditions), but the blank tables are included for completeness.

Figure C.1 is a plot of the spike-corrected cumulative flux data in Table C.2 for stable lands, all soils. Cumulative fluxes from stable lands tended to consistently increase with increasing 10-meter wind speed.

Figure C.2 is a plot of the spike-corrected cumulative flux data in Table C.1 for unstable lands, all soils. Cumulative fluxes from unstable lands did not increase uniformly with wind speeds, but tended to oscillate near a mean value of  $5.00 \times 10^{-3}$  ton/acre/hour.

Figure C.3 is a plot of the spike data in Table C.2 for stable lands, all soils. Cumulative stable spikes lands tended to consistently increase with increasing 10-meter wind speed.

Figure C.4 is a plot of the spike data in Table C.1, for unstable lands, all soils. Cumulative spikes from unstable lands tended to be somewhat larger and to increase more erratically with increasing wind speeds than cumulative spikes from stable lands (compare Figure C.4 to Figure C.3).

		Table C.1	Geometric mean PM-10 spike-corrected fluxes and spikes	M-10 spike-corrected	d fluxes and spikes			
			All Soils - Unstable					ſ
		Unstable	e (disturbed) sites (new classfication) n = 68	new classfication) n	= 68			
	Canm mean fliv	Geom mean flux	Geom mean flux	Geom mean flux I Geom mean spike Geom mean spike Geom mean spike	Geom mean spike	Geom mean spike	Number	Number
	_		+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9								ſ
15-19.9	1.50E-03	4.95E-03	1.63E-02	1.47E-04	9.65E-04	6.33E-03	n	2
01-04	1 235-03	5 21E-03	2.21E-02	1.14E-04	8.16E-04	5.82E-03	4	4
26.79.9	1 185-03	6 40F-03	3.48E-02	2.80E-04	1.94E-03	1.35E-02	12	
20.24.0	1 215-03	4 62F-03	1.76E-02	3.43E-04	1.41E-03	5.82E-03	13	13
30-34-3	R ORF_D4	7 05E-03	5.54E-02	4.37E-04	3.80E-03	3.31E-02	19	÷
0 11 01	0.30E-01	1 135-02	5 41E-02	9.40E-04	3.45E-03	1.27E-02	6	8
16.40.0	0 71E_04	7 125-03	5.22E-02	1.43E-03	4.50E-03	1.42E-02	7	5
50-54.9	N/A	3.69E-03	N/A	N/A	1.30E-03	N/A		-
65-59.9								
60-64.9								
66-69-9								20
444 A.S.							80	R

Geometric mean PM-10 spike-corrected fluxes and spikes

total runs

			All Soils - Stable					
		Stable (ur	ndisturbed) sites (ne	ndisturbed) sites (new classification) n = 169	- 169			
Wind Speed	Geom mean flux		Geom mean flux	Geom mean flux Geom mean spike Geom mean spike Geom mean spike	Geom mean spike	Geom mean spike	Number	Number
(han)	1		+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9								
15-19.9	N/A	1.95E-03	N/A	N/A	4.00E-04	N/A	-	-
20-24.9	3.16E-04	1.38E-03	6.07E-03	2.39E-05	2.12E-04	1.88E-03	4	3
26-29.9	9.46E-04	2.57E-03	7.00E-03	1.52E-04	4.90E-04	1.58E-03	11	10
30-34.9	7.81E-04	3.16E-03	1.28E-02	1.62E-04	5.88E-04	2.14E-03	23	22
35-39.9	9.17E-04	2.99E-03	<u>9.73E-03</u>	2.84E-04	9.24E-04	3.01E-03	28	27
40-44-9	2.08E-03	5.92E-03	1.68E-02	6.40E-04	1.70E-03	4.53E-03	34	33
45-49.9	3.02E-03	7.58E-03	1.90E-02	9.57E-04	2.20E-03	5.05E-03	30	29
50-54.9	5.94E-03	1.10E-02	2.02E-02	1.21E-03	2.58E-03	5.48E-03	22	22
6.68-99	9.03E-03	1.69E-02	3.15E-02	1.51E-03	3.32E-03	7.29E-03	12	12
60-64.9	9.99E-03	1.66E-02	2.76E-02	1.62E-03	4.03E-03	1.00E-02	4	4
62-69.9								
total runs							169	163

Table C.2 Geometric mean PM-10 spike-corrected fluxes and spikes

			Group 2 - Unstable e (distinted) sites (new classification) n = 33	ew classication) n	= 33			
Wind Shead	Geom moan flux	Geom mean flux	Geom mean flux	Geom mean flux Geom mean spike Geom mean spike Geom mean spike Number	Geom mean spike	Geom mean spike	Number	Number
(moh)			+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
(mahun)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9								
15-19.9	N/A	N/A	N/A	N/A	N/A	N/A	A/N	A/A
20-24 9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/A
25-29.9	N/A	NA	N/A	N/A	N/A	N/A	N/A	A/A
30-34.9	1.54E-03	4.12E-03	1.10E-02	2.31E-04	8.28E-04	2.97E-03	S	5
15.39 9	8 97F-04	2 81F-03	8.82E-03	2.39E-04	8.63E-04	3.12E-03	<u>6</u>	10
40.44 9	1 03F-03	2 80E-03	7.65E-03	2.82E-04	1.37E-03	6.70E-03	6	5
45-49-9	1.37E-03	7.27E-03	3.86E-02	5.79E-04	2.33E-03	9.36E-03	5	4
50-54.9	3.73E-04	2.13E-03	1.22E-02	3.93E-04	1.82E-03	8.46E-03	4	2
55-59.9								
60-64.9								
65-69-39								-
total nine							Ê	92

 Table C.3
 Geometric mean PM-10 spike-corrected fluxes and spikes

 Croin 2 - Histable

total runs

 Table C.4
 Geometric mean PM-10 spike-corrected fluxes and spikes

 Group 2 - Stable

		Stable (	Indistributes (new classification) n = 52	ew classification) n	= 52			
Wind Sneed	Gaom mean flux	Geom mean flux	Geom mean flux	Geom mean spike	Geom mean flux Geom mean spike Geom mean spike Geom mean spike Number	Geom mean spike	Number	Number
(moh)	-1 Std. Dev		+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9								
15-19.9	N/A	N/A	N/A	N/A	N/A	N/A	A/N	A/A
20-24.9	4.15E-04	4.65E-04	5.21E-04	5.53E-05	5.53E-05	5.53E-05	2	-
25-29.9	9.37E-04	1.52E-03	2.47E-03	7.57E-05	1.34E-04	2.36E-04	£	m
30-34.9	8 64F-04	2.48E-03	7.14E-03	2.73E-04	5.46E-04	1.09E-03	9	9
35-39.9	1.17E-03	2.45E-03	5.14E-03	5.01E-04	1.04E-03	2.17E-03	7	7
40-44.9	2 24E-03	6.48E-03	1.88E-02	1.05E-03	1.87E-03	3.33E-03	12	11
45-49.9	3.56E-03	7.18E-03	1.45E-02	1.38E-03	2.25E-03	3.66E-03	æ	œ
50-54.9	5.60E-03	1.24E-02	2.75E-02	1.44E-03	3.19E-03	7.03E-03	æ	ω
55-59.9	1.35E-02	2.19E-02	3.56E-02	2.50E-03	5.24E-03	1.10E-02	4	4
60-64.9	7.83E-03	1.58E-02	<b>3.19E-02</b>	1.21E-03	3.61E-03	1.07E-02	7	~
6.69.3								

total runs

20

52

			Group 3 - Unstable					
	statements and the proved in the damage	Unstable	a (disturbed) sites (	is (districted) sites (new classification) $n = 3$		statica to the second second		
	Goom moon fliv	Geom mean flux	Geom mean flux	Geom mean flux Geom mean spike Geom mean spike Geom mean spike Number	Geom mean spike	Geom mean spike	Number	Number
naade puim				1 Std Dav		+1 Std. Dev	of flux	of spike
(uph)	-1 Std. Dev		+1 JIU. DEV			(	0.00	Dine
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(tonvacre)	SINK	
10-14.9								6
46 40 0	NVA	A/N	A/A	A/A	N/A	N/A	o	2
6761-61		N/A	N/A	NA	NA	N/A	0	0
20-24.9			N/A	N/A	NA	N/A	0	0
55-23°S	A/N		2 075 03	2 93E-04	6 59E-04	1.48E-03	7	2
30-34.4	4.0/E-04		0.010-00		1 405 03	N/A	-	Ļ
35-39.9	N/A	5.42E-03	N/A	<b>EX</b>				
40-44.9	N/A	N/A	N/A	N/A	NA	A/A	יכ	
45.40 9	N/A	N/A	N/A	N/A	N/A	NA	0	5
50-54 9	N/A	A/N	N/A	N/A	N/A	NA	0	0
55-59 G	N/A	N/A	N/A	N/A	N/A	N/A	0	
60-64.9	N/A	NA	N/A	N/A	N/A	N/A	•	0
65-69.9							,	ſ
tated mine							v	o

## Table C.5 Geometric mean PM-10 spike-corrected fluxes and spikes Grain 3 - Heetable

total runs

 Table C.6
 Geometric mean PM-10 spike-corrected fluxes and spikes

 Group 3 - Stable

			Unistantana) staat			ovin moon - nike	Number	Nimber
Wind Speed	Geom mean flux	Geom mean flux	Geom mean flux	Geom mean flux Geom mean spike Geom mean spike Geom mean flux	сеот теап spike	Ceolii Illeali shive		-
(Hom)	-1 Std. Dev		+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	Ö
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9				Turi Bran			•	
15-19.9	N/A	A/A	NA	N/A	NA	NA	5	<b>&gt;</b> '
20-24.9	N/A	N/A	N/A	N/A	N/A	A/A	0	
25-29.9	N/A	5.16E-04	NA	N/A	N/A	A/A		•
30-34.9	AN	AN	N/A	N/A	N/A	N/A	0	•
35-39-9	N/A	NA	N/A	N/A	N/A	N/A	0	0
40-44.9	N/A	1.91E-03	N/A	N/A	5.13E-04	NA	-	
46.49.9	5 67E-03	5.68E-03	5.70E-03	1.38E-03	1.45E-03	1.52E-03	2	2
50-54.9	7.37E-03	7.46E-03	7.56E-03	2.58E-03	3.52E-03	4.81E-03	~ ~	N 9
55-59.9	NA	N/A	NA	N/A	N/A	NA		<b>-</b>  •
60-64.9	N/A	N/A	N/A	N/A	N/A	A/A	0	Þ
65-69.9							,	

			oroup 9 - Unskune 6 (disturbed) sites (new classification) n = 8	newrelassfication) n				
Mind Shood	Goom mean flev	Geom mean flux		Geom mean flux Geom mean spike Geom mean spike Geom mean spike Number	Geom mean spike	Geom mean spike	Number	Number
(mnh)		_	+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
//)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9								
15-19.9	N/A	NA	N/A	N/A	N/A	N/A	0	0
20-24.9	N/A	4.26E-03	N/A	N/A	2.67E-03	N/A	•	-
25-29.9	N/A	2.72E-02	AN	N/A	1.19E-02	N/A	-	-
30-34.9	NA	7.23E-02	N/A	N/A	2.67E-02	N/A		-
35-39.9	2 22E-03	1.95E-02	1.72E-01	5.35E-04	5.93E-03	6.57E-02	2	2
6 PT-UP	N/A	7.99E-03	N/A	NA	3.37E-03	N/A	-	+
45-49.9	N/A	NA	N/A	N/A	N/A	N/A	0	0
50-54.9	1.84E-02	2.33E-02	2.94E-02	6.10E-03	6.95E-03	7.93E-03	2	8
55-59.9								
60-64.9								
65-69.9								,
10401 2002							ω	50

# Table C.7 Geometric mean PM-10 spike-corrected fluxes and spikes Group 5 - Unstable

total runs

# Table C.8 Geometric mean PM-10 spike-corrected fluxes and spikes Group 5 - Stable Stable

Wind Sneed	Geom mean flux	Geom mean flux		Geom mean flux Geom mean spike Geom mean spike Geom mean spike Number Number	Geom mean spike	Geom mean spike	Number	Number
(mmh)	_		+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9								
15-19.9	N/A	NA	N/A	N/A	N/A	N/A	0	o
20-24.9	N/A	N/A	N/A	N/A	N/A	N/A	0	0
26-29.9	A/A	2.52E-03	N/A	NIA	6.32E-04	N/A	-	
30-34.9	3.99E-04	2.15E-03	1.15E-02	9.32E-05	5.66E-04	3.44E-03	4	4
35-39.9	1 10E-03	2.66E-03	6.47E-03	3.15E-04	7.48E-04	1.77E-03	4	4
40-44 9	1.64E-03	7.18E-03	3.15E-02	8.38E-04	3.49E-03	1.45E-02	9	9
45.49.9	4.07E-03	8.69E-03	1.86E-02	1.15E-03	2.38E-03	4.94E-03	8	ω
50-54.9	9.38E-03	1.32E-02	1.86E-02	2.54E-03	3.52E-03	4.89E-03	S	5
55-59.9	1.24E-02	2.15E-02	3.74E-02	2.02E-03	4.28E-03	9.09E-03	4	4
60-64.9	A/N	2.52E-02	NA	N/A	9.89E-03	N/A	-	-

65-69.9 total runs

33

33

			a (disturbed) sites (new classification) $n = 0$	new classfication)	014			
Wind Speed	Geom mean flux	Geom mean flux	Geom mean flux	Geom mean spike	Geom mean spike Geom mean spike Geom mean spike	Geom mean spike	Number	Number
(ham)	-1 Std Dev		+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
/indim/	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9						A1A	c	c
15-19.9	N/A	A/A	NA	N/A	A/A	¥/Z		
20-24.9	N/A	NA	N/A	N/A	A/N	NA	0	
25-29.9	AVA	NA	N/A	N/A	N/A	N/A	0	•
30-34 9	N/A	NA	N/A	AN	N/A	NA	0	0
26.29 9	A/N	N/A	N/A	N/A	N/A	N/A	0	0
40.44 9	N/A	NA	N/A	NA	N/A	N/A	0	0
45.49.9	N/A	A/N	A/A	N/A	N/A	N/A	0	0
50-54 Q	A/N	N/A	N/A	N/A	A/A	N/A	0	0
	A/N	N/A	A/A	N/A	A/A	N/A	0	0
60-64 9	N/A	A/N	N/A	N/A	N/A	N/A	0	•
6.69.69								
total runs				the second s	ad fluxer and eniber		2	>
		l able C.10	Geometric mean r Grown 6 - Stable	M-10 spine-content	Geometric mean rm-to spike-tottected nuces and spike Group 6 - Stable			
		Stable ()		tew classification)	<b>n = 2</b> 0			
Wind Sneed	l Geom mean flux	Geom mean flux		Geom mean spik	Geom mean spike Geom mean spike Geom mean spike	Geom mean spike	2	Number
(Hom)	+-		+1 Std. Dev	-1 Std. Dev		+1 Std. Dev		of spike
//	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9					NIA	N/A	c	0
15-19.9	NA	NA	A/N		A REE OR	A/N	) <del>-</del>	-
20-24.9	N/A	1.61E-03	A/N		1 475-03	2 87E-03	4	4
26-29.9	3.//E-03	1.205 00	1.405-02	5 33F-04	2 11E-03	8.37E-03	3	e
30-34.4	1.035-03	4 78E-02	1 775-02	9.92E-04	2.15E-03	4.65E-03	e	3
6 PP-OP	1 59E-03	3.63E-03	8.32E-03	2.96E-04	9.28E-04	2.91E-03	4	4
45-49-9	N/A	9.08E-03	N/A	N/A	4.20E-03	A/A	-	•
50-54.9	6.09E-03	7.78E-03	9.94E-03	9.59E-04	1.48E-03	2.29E-03	с ,	m •
55-59.9	N/A	1.19E-02	N/A	N/A	1.98E-03	NA		
60-64.9	N/A	N/A	N/A	A/A	NA	A/A	•	<b>o</b>   
000								

60-64.9 65-69.9 total runs

20

20

		. Instable	Group / - Unstable (disturbed) sites (new classification) n = 0	new classification)				
Wind Sneed	Geom mean flux	Geom mean flux	Geom mean flux	Geom mean spike	Geom mean flux Geom mean spike Geom mean spike Geom mean spike Number	Geom mean spike	Number	Number
(ham)			+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9								
15-19.9	A/N	NA	N/A	N/A	NA	N/A	0	0
20-24.9	NA	N/A	N/A	N/A	N/A	N/A	0	0
25-29.9	NA	N/A	N/A	N/A	N/A	N/A	0	0
30-34.9	AVA	A/A	N/A	N/A	NA	N/A	0	0
35-39.9	NA	N/A	N/A	N/A	NA	A/A	0	0
40-44.9	NA	N/A	N/A	N/A	NA	N/A	0	0
45-49.9	NA	N/A	N/A	N/A	NA	N/A	0	0
50-54.9	NA	N/A	N/A	NA	N/A	N/A	0	0
55-59.9	N/A	N/A	N/A	N/A	NIA	N/A	0	0
60-64.9	N/A	N/A	N/A	N/A	N/A	NA	0	0
65-69.9								
total runs							0	0

## Geometric mean PM-10 spike-corrected fluxes and spikes Group 7 - Unstable Table C.11

total runs

Geometric mean PM-10 spike-corrected fluxes and spikes Group 7 - Stable Table C.12

		Stable (	(undisturbed) sites (new class ification) in the 6	ew classification) n	<b>2 1</b>			
Wind Speed	Geom mean flux	Geom mean flux	Geom mean flux	Geom mean flux Geom mean spike Geom mean spike Geom mean spike Number	Geom mean spike	Geom mean spike	Number	Number
(mah)		1	+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9								
15-19.9	NA	N/A	N/A	N/A	A/A	N/A	0	0
20-24.9	N/A	N/A	N/A	N/A	N/A	N/A	0	0
26-29.9	N/A	NA	N/A	N/A	AN	N/A	0	0
30-34.9	3.80E-04	1.43E-03	5.34E-03	3.90E-05	1.88E-04	9.02E-04	2	2
35-39.9	7.85E-04	2.41E-03	7.39E-03	1.10E-04	3.79E-04	1.31E-03	З	Э
40-44.9	2.72E-03	5,90E-03	1.28E-02	6.20E-04	1.25E-03	2.50E-03	e	3
45-49.9	3.16E-03	1.03E-02	3.33E-02	6.08E-04	2.19E-03	7.87E-03	5	5
50-54.9	N/A	1.43E-02	N/A	N/A	1.50E-03	N/A	+	-
55-59.9	N/A	2.25E-02	N/A	N/A	2.08E-03	N/A	-	•
60-64.9	N/A	N/A	N/A	N/A	N/A	N/A	0	0
65-69.9								
total runs							15	15

			Group 8 - Unstable					-
		Unstable	e (disturbed) sites (new classfication) n = 19	new classfication) r	1 <b>1 1</b>			
Wind Speed	Geom mean flux	Geom mean flux	Geom mean flux	Geom mean spike	Geom mean flux Geom mean spike Geom mean spike Geom mean spike Number	Geom mean spike	Number	Number
(Ham)			+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
6-4	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
10-14.9	A/N	NN	N/A	N/A	N/A	N/A		
15-19.9	N/A	N/A	N/A	NA	N/A	N/A		
20-24.9	NA	1.62E-03	N/A	NA	1.10E-04	N/A	1	-
25-29.9	9.61E-04	3.00E-03	9.39E-03	1.23E-04	3.34E-04	9.04E-04	e	ო
30-34.9	8.22E-04	3.75E-03	1.71E-02	NA	N/A	N/A	2	0
35-39.9	8.00E-03	1.21E-02	1.82E-02	1.79E-03	2.36E-03	3.12E-03	2	2
20-44.9	1 15E-03	3.96E-03	1.36E-02	1.82E-04	1.58E-03	1.37E-02	9	2
45-49.9	2.95E-03	1.44E-02	6.99E-02	1.03E-03	4.79E-03	2.24E-02	e	e
50-54.9	A/N	8.26E-02	N/A	NA	1.15E-02	N/A	Ŧ	-
55-59.9	N/A	3.69E-03	N/A	N/A	1.30E-03	N/A	-	-
60-64.9						i		
65-69.9								
total runs							19	13

Geometric mean PM-10 spike-corrected fluxes and spikes Group 8 - Unstable Table C.13

total runs

Geometric mean PM-10 spike-corrected fluxes and spikes Group 8 - Stable Table C.14

Geom mean flux         Geom mean flux         Geom mean spike         Number         +1 Std. Dev         of flux           +1 Std. Dev         -1 Std. Dev         -1 Std. Dev         -1 Std. Dev         of flux           (ton/acre/hr)         (ton/acre)         (ton/acre)         (ton/acre)         Runs           N/A         N/A         4.00E-04         N/A         1           N/A         N/A         2.64E-03         N/A         1           N/A         N/A         2.64E-03         N/A         1           N/A         N/A         N/A         1.01         1           N/A         N/A         N/A         1.01         1         1           N/A         N/A         N/A         1.01         1         1           N/A         N/A         N/A         1.01         1         1           N/A         N/A         N/A         1.01         2         2           1.04E-02         8.58E-05         6.40E-04         1.41E-03         2.34E-03         7           1.86E-02         N/A         1.41E-03         2.34E-03         7         2           1.86E-02         N/A         N/A         1.41E-03         2.34E-03         <				ndisturbed) sites (n	undisturbed) sites (new classification) n = 17				
-1 Std. Dev         +1 Std. Dev         +1 Std. Dev         +1 Std. Dev         of flux           (toniacre/hr)         (toniacre/hr)         (toniacre/hr)         (toniacre/hr)         (toniacre/hr)         (toniacre/hr)         n/A         1         1           N/A         1.95E-03         N/A         N/A         N/A         4.00E-04         N/A         1           N/A         1.06E-02         N/A         N/A         N/A         1.06E-03         N/A         1           N/A         N/A         N/A         N/A         N/A         1.06E-03         N/A         1           NA         N/A         N/A         N/A         N/A         1.06E-03         1.04E-03         2.64E-03         1.0/A         1           S18E-03         6.33E-03         1.04E-02         8.58E-05         6.40E-04         4.78E-03         7           5.18E-04         3.44E-03         1.04E-02         8.58E-05         6.40E-04         4.78E-03         7           3.34E-04         3.34E-03         3.18E-02         N/A         1.41E-03         2.34E-03         7           N/A         N/A         N/A         N/A         N/A         1.41E-03         2.34E-03         4           N/A </th <th>Wind Sneed</th> <th></th> <th>Geom mean flux</th> <th>Geom mean flux</th> <th>Geom mean spike</th> <th>Geom mean spike</th> <th>Geom mean spike</th> <th>Number</th> <th>Number</th>	Wind Sneed		Geom mean flux	Geom mean flux	Geom mean spike	Geom mean spike	Geom mean spike	Number	Number
(toniacre/hr)         (tonvacre/hr)         Runs           NIA         1.95E-02         NIA         NIA         NIA         NIA         NIA         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	(hoh)			+1 Std. Dev	-1 Std. Dev		+1 Std. Dev	of flux	of spike
NIA       1.95E-03       N/A       N/A       4.00E-04       N/A       1       1       1         N/A       1.06E-02       N/A       N/A       N/A       2.64E-03       N/A       1       1       1       1         N/A       N/A       N/A       N/A       N/A       N/A       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< th=""><th>A</th><th>(ton/acre/hr)</th><th>(ton/acre/hr)</th><th>(ton/acre/hr)</th><th>(ton/acre)</th><th>(ton/acre)</th><th>(ton/acre)</th><th>Runs</th><th>Runs</th></t<>	A	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Runs	Runs
N/A         1.95E-03         N/A         N/A         N/A         4.00E-04         N/A         1         1         1           N/A         N/A         N/A         N/A         N/A         N/A         1.06E-03         N/A         1         1         1         1           N/A         N/A         N/A         N/A         N/A         N/A         N/A         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	10-14.9								
N/A         1.06E-02         N/A         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <	15-19.9	N/A	1.95E-03	N/A	N/A	4.00E-04	N/A		-
NIA         A.78E-03         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th=""> <th2< th=""></th2<></th2<>	20-24.9	A/A	1.06E-02	N/A	N/A	2.64E-03	N/A	-	-
3.85E-03     6.33E-03     1.04E-02     8.58E-05     6.40E-04     4.78E-03     2     2       5.18E-04     3.44E-03     2.28E-02     1.74E-04     1.21E-03     8.38E-03     7     6       1.24E-03     4.81E-03     1.86E-02     8.48E-04     1.21E-03     8.38E-03     7     6       1.24E-03     3.34E-03     1.86E-02     8.48E-04     1.21E-03     8.38E-03     7     6       1.24E-03     3.24E-03     3.18E-02     N/A     4.15E-03     7     7     6       N/A     N/A     N/A     4.15E-03     7     7     7     6       N/A     N/A     N/A     1.41E-03     2.34E-03     7     7     7       N/A     N/A     N/A     4.15E-03     7     7     7     7       N/A     N/A     N/A     1.41E-03     2.34E-03     7     7     7       N/A     N/A     N/A     1.41E-03     2.34E-03     7     7     7       N/A     N/A     N/A     1.41E-03     2.34E-03     7     7     7       N/A     N/A     N/A     1.41E-03     7     7     7     7       1     1     1     1     1     1     1<	25-29.9	N/A	A/A	N/A	N/A	N/A	N/A	0	0
5.18E-04     3.44E-03     2.28E-02     1.74E-04     1.21E-03     8.38E-03     7     6       1.24E-03     4.81E-03     1.86E-02     8.48E-04     1.41E-03     2.34E-03     4     3       3.34E-04     3.26E-03     3.186E-02     8.48E-04     1.41E-03     2.34E-03     4     3       N/A     N/A     N/A     N/A     1.41E-03     2.34E-03     4     3       N/A     N/A     N/A     1.41E-03     2.34E-03     4     3       N/A     N/A     N/A     4.15E-03     0     0       N/A     N/A     N/A     0     0     0       N/A     N/A     N/A     0     0     0	30-34.9	3.85E-03	6.33E-03	1.04E-02	8.58E-05	6.40E-04	4.78E-03	2	2
1.24E-03       4.81E-03       1.86E-02       8.48E-04       1.41E-03       2.34E-03       4       3         3.34E-04       3.26E-03       3.18E-02       N/A       4.15E-03       2       4       3         N/A       N/A       N/A       4.15E-03       1.41E-03       2       4       3         N/A       N/A       N/A       N/A       1.41E-03       0       0       0         N/A       N/A       N/A       N/A       1.41E-03       0       0       0         N/A       N/A       N/A       N/A       0       0       0       0       0         N/A       N/A       N/A       N/A       0       0       0       0       0         N/A       N/A       N/A       0       0       0       0       0       0       0       0       0       0       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>35-39.9</td> <td>5.18E-04</td> <td>3.44E-03</td> <td>2.28E-02</td> <td>1.74E-04</td> <td>1.21E-03</td> <td>8.38E-03</td> <td>7</td> <td>9</td>	35-39.9	5.18E-04	3.44E-03	2.28E-02	1.74E-04	1.21E-03	8.38E-03	7	9
3.34E-04     3.26E-03     3.18E-02     N/A     4.15E-03     N/A     2       N/A     N/A     N/A     N/A     N/A     0     0       N/A     N/A     N/A     N/A     N/A     0     0       N/A     N/A     N/A     N/A     0     0     0       N/A     N/A     N/A     N/A     0     0     0	40-44.9	1.24E-03	4.81E-03	1.86E-02	8.48E-04	1.41E-03	2.34E-03	4	e
NIA NIA NIA NIA NIA NIA NIA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45-49.9	3.34E-04	3.26E-03	3.18E-02	N/A	4.15E-03	N/A	2	-
NIA NIA NIA NIA NIA NIA 0 0 0	50-54.9	N/A	N/A	N/A	N/A	AN	N/A	0	0
	55-59.9	N/A	N/A	N/A	N/A	N/A	N/A	0	0
	60-64.9								
	65-69.9								
	total nine							17	4

			m mean spike Number Number	+1 Std. Dev of flux of snike	Runs		N/A			1.65E-01 2 2 2		3.30E-01 3 3	NA 1 3	N/A	A/N	A/A	
Line contention makes and spikes			41 Std Dow 4 Std 5 Spike Geom mean spike Geom mean spike Number	+	(ton/acre)		N/A	3.06E-03	NA	1.30E-02	N/A	3.87E-02	6.25E-03	N/A	N/A	NA	
Group 9 - Unstable	ole (disturbed) sites (new class(ication) n = 7	Geom mean finy loom me		//////////////////////////////////////	(wiracre/nr) (ton/acre)							4					
	Unstal	Geom mean flux		(ton/acre/hr)		NIA	1 755 00	N/A	4 57E_02		3 40F-01	5 08E-02	N/A	N/A	N/A		
		5	-1 Std. Dev	(ton/acre/hr)		N/A	NA	NA	5.71E-03	N/A	5.89E-02	NA	N/A	N/A	N/A		
	Wind Sneed		(hqm)		10-14.9	15-19.9	20-24.9	26-29.9	30-34.9	35-39.9	40-44.9	45-49.9	50-54.9	55-59.9	60-64.9	65-69.9	total runs

# Table C.15 Geometric mean PM-10 spike-corrected fluxes and spikes Group 9 - Heetablo

Table C.16 Geometric mean PM-10 spike-corrected fluxes and spikes

		Stable						
Wind Speed	Geom mean flux	Geom mean flux	Com most di	UODROUNSARIA MA				
(hqm)	-1 Std. Dev			Geom mean spike	Geom mean spike	Vedininean nux Geom mean spike Geom mean spike Geom mean spike Numher Numher	Nimher	Number
	(ton/acre/hr)	(thuisevalle)		-1 Std. Dev		+1 Std. Dev		
10-14.9			(uon/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	Rine	Dispire
15-19.9	N/A	NIA					2	
20-24.9	NA	D/N	A/N	NA	N/A	A/A	C	c
25-29.9	1.15E-03	1615.03	ANA 2 201 00	NA	N/A	NA		5
30-34.9	1.52E-03	3.01E-03	Z.Z0E-03	1.99E-04	3.61E-04	6.54E-04	> ^	<b>)</b> (
35-39.9	8.83E-04	3.18E-03	0.9/E-U3 1 14E 00	1.59E-04	4.68E-04	1.38E-03	4 m	<b>v</b> v
40-44.9	4.47E-03	8.47E-03	1.14C-UZ	3.69E-04	8.15E-04	1.80E-03	0	> ~
45-49.9	2.25E-03	8.78E-03	3.475.02	5.24E-04	1.64E-03	5.11E-03	- L	) ic
50-54.9	4.30E-03	1.03E-02	2 46E NO	0.335-04	2.48E-03	9.39E-03	0	) <i>(</i> ,
55-59.9	N/A	6.22E-03	2TUE-UZ	5.6/E-04	1.79E-03	5.63E-03	4	
60-64.9	NA	1.21E-02	VN	A/N	1.77E-03	N/A		+ +
65-69.9				AN	2.04E-03	NA	       	-   -
total runs							- <b>-</b>	-

2

24

Figure C1 - Stable (undisturbed) flux - spikes removed - all soils

Geometric mean +/- 1 standard deviation

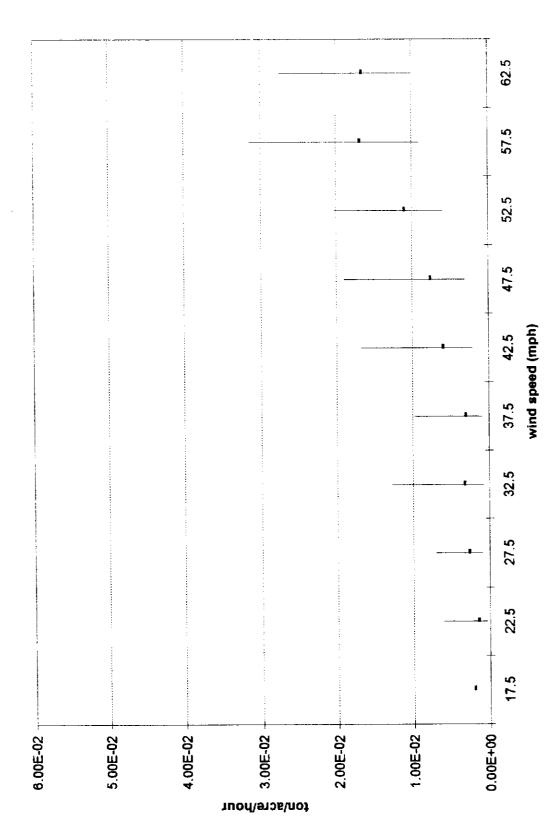
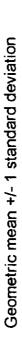




Figure C2 - Unstable (disturbed) flux - spikes removed - all soils



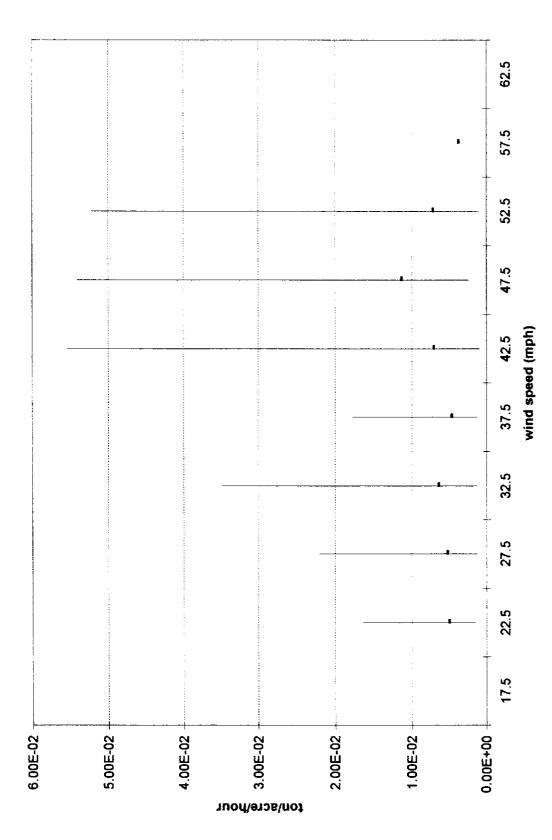



Figure C3 - Stable (undisturbed) spikes - all soils

Geometric mean +/- 1 standard deviation

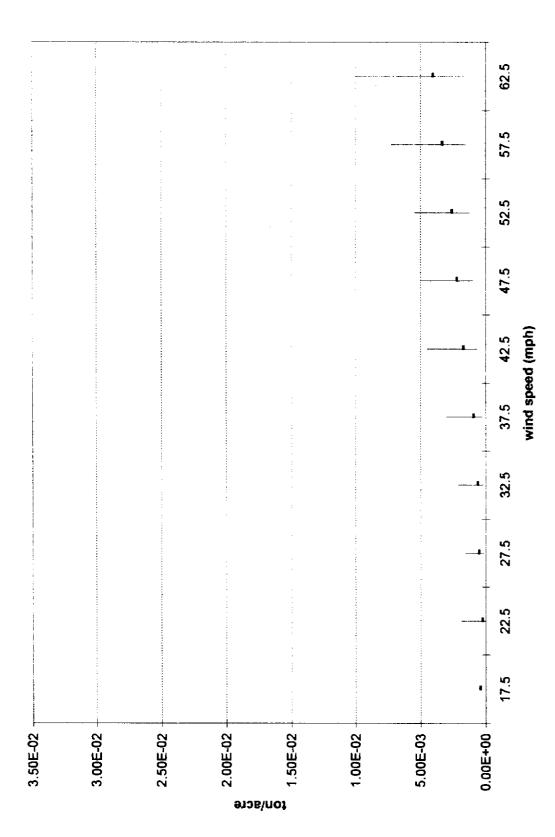
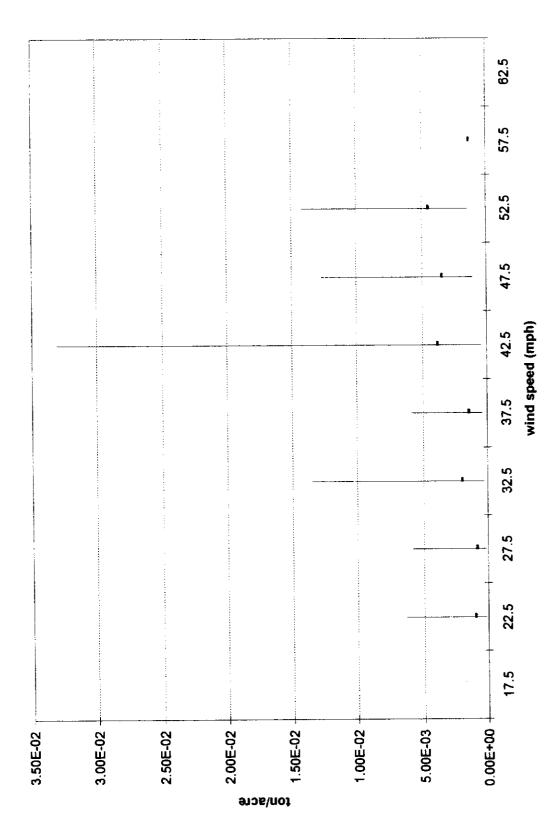




Figure C4 - Unstable (disturbed) spikes - all soils

Geometric mean +/- 1 standard deviation



#### Section D - 1995 wind tunnel aerodynamic roughnesses and PM-10 initiation velocities

Table D.00 contains the direct measurements of aerodynamic roughness height, zo, and observed PM-10 spike velocities, at both z=7.5 centimeters and z=10 meters, from the 1995 wind tunnel field study.

Aerodynamic roughness height, zo, was determined from a logarithmic fit to the velocity profile measured over the soil surface by the profiling pitot tube in the working section of the tunnel. Physically, aerodynamic roughness may be thought of as the height above the surface at which the wind velocity goes to zero.

The PM-10 spike velocity is computed from the profiling pitot tube pressure drop that corresponded to the first indication of a PM-10 concentration "spike" exceeding 1.00 mg/m³, as measured by the TSI Dust-Trak^(r). The concentration "spike" was obtained by starting the wind tunnel with the front bypass air inlet wide open, and slowly closing it until a spike was observed on the TSI display. The pitot tube pressure drop, measured at an elevation of 7.50 centimeters, corresponding to this damper position was recorded, and the pressure drop was subsequently converted to a flow velocity.

The aerodynamic roughness height was then used with this 7.50 cm spike velocity to compute an extrapolated velocity at an elevation of 10 meters.

Data in Table D.00 are sorted by wind tunnel Site designation, to facilitate direct comparison with wind tunnel site data in Section 1, Table 1 of this report.

In the next table, Table D.0, the same data are presented, this time sorted by major soil group and by unstable/stable classification. Sorted data in this table were then extracted into a series of sub-tables, one table for each soil group and stability condition. Computations of geometric mean and standard deviation were performed in each sub table, and the results from each subtable were exported to Tables D.1 through D.8.

Tables D.1 through D.8 contain minimum, maximum, geometric mean and standard deviation aerodynamic roughnesses and spike velocities for each major soil group and for each stability (unstable/stable) classification. The tables are arranged in the following order:

Table #	Major soil group
D.1	All soils
D.2	2
D.3	3
D.4	5
D.5	6
D.6	7
<b>D</b> .7	8
D.8	9

Table D.00 - 1995 aerodynamic roughnesses and observed initiation velocities for elevated PM-10 (spike velocities)

0

Sorted by sampling locations

Table D.00 - 1995 aerodynamic roughnesses and observed initiation velocities for elevated PM-10 (spike velocities) Sorted by sampling locations

			!					Ÿ	-						ļ					-		!	1		,			-			
Extrapolated spike velocity at z=10m (mph)	24.6	27.6	32.3	27.8	22.3	23.7	25.1	28.7	30.2	29.8	17.3	30.4	30.2	26.8	29.0	28.8	29.9	32.2	26.1	30.4	27.2	32.3	31.5	20.4	21.0	25.7	27.1	31.3	22.0	31.1	27.1
RN-10 spile veloav at z=7.8 cm (mbh)	12.0	12.7	13.1	12.2	11.1	13.5	13.3	17.3	13.6	13.0	11.9	12.5	12.9	14.3	12.2	14.7	12.5	12.4	13.1	19.1	11.4	14.9	13.7	11.8	12.8	12.0	13.8	13.5	11.9	13.7	14 0
	.0707	.1146	.2628	.1666	.0588	.0112	.0312	.0046	.1403	.1738	.000	.2405	.1942	.0281	.2172	.0467	.2238	.3416	.0531	.0018	.2219	.1157	.1727	.0086	.0037	.1031	.0487	.1863	.0227	.1596	
	1	<b>-</b>	1					1	0	0	0	0	0	o	0	0	0	0	, <b>, ,</b>	0	0	0	0	0	0	<b>_</b>	0	0	+	-	
	8	0	00	8	Ø	Ø	ø	2	5	~	0	2	2	7	0	2	2	2	2	N	7	m	7	2	2	0	ø	ø	8	2	c
8	WT031-B	WT031-C	WT031-D	WT031-E	WT031-F		WT031-H	WT032	WT033	WT034	WT035	WT036	WT037	WT038	WT039	WT040	WT041	WT042	WT043	WT044	WT045	WT046	WT047	WT048	WT049	WT050	WT051	WT052	WT053	WT054	14 TACE
	7/05/95	7/05/95	<u> </u>	_	<u> </u>		7/10/95	7/06/95	7/07/95	7/12/95	7/12/95	7/13/95	7/13/95	7/14/95	7/14/95	7/14/95	7/18/95	7/18/95	7/18/95	7/19/95	7/19/95	7/20/95	7/20/95	7/24/95	7/24/95	7/28/95	7/25/95	7/25/95	7/26/95	7/27/95	101101

Table D.00 - 1995 aerodynamic roughnesses and observed initiation velocities for elevated PM-10 (spike velocities) Sorted by sampling locations

Extrapolated spike velocity at z=10m (mph)	23.6	28.9	25.7	30.7	20.8	28.6	30.1	31.9	25.3	25.6	28.7		23.7	22.9	30.5	19.5	27.1	35.3	26.5	31.7	23.2	27.6	18.2
Rue 10 solice velocity et ref 6 cm (mph)	12.7	15.7	11.2	13.8	11.5	10.7	11.8	12.8	10.6	13.0	14.1		12.4	12.1	14.2	12.1	12.8	14.7	12.3	12.5	12.2	13.6	9.6
	.0251	.0223	.1691	.1395	.0172	.4099	.3139	.2891	.2226	.0489	.0690		.0340	0300	.1081	.0027	.0930	.2319	.1053	.3099	.0334	.0654	.0323
	-	1	0	0	0		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	+
	8	ω	0	0	6	5	S	5	<b>9</b>	5	9	ø	2	5	5	5	7	7	7	6	6	6	6
8	WT056	WT057	WT058	WT059	WT060	WT061	WT062	WT063	WT064	WT065	WT066	WT067	WT068	WT069	WT070	WT071	WT072	WT073	WT074	WT075	WT076	WT077	WT078
	7/28/95	7/28/95	7/31/95	8/01/95	8/01/95	8/02/95	8/02/95	8/02/95	8/04/95	8/03/95	8/03/95	8/03/95	8/08/95	8/08/95	8/09/95	8/14/95	8/14/95	8/15/95	8/18/95	8/18/95	8/30/95	8/30/95	9/01/95

Table D.0 - 1995 aerodynamic roughnesses and observed initiation velocities for elevated PM-10 (spike velocities) Sorted by major soil group

		200 200 200 200	95	2 (U)		velocity at z=10m (mph)
7/12/95	WT035	2	0	.0001	11.9	17.3
7/24/95	WT048	2	0	0086	11.8	20.4
7/24/95	WT049	7	0	.0037	12.8	21.0
8/08/95	WT068	2	0	.0340	12.4	23.7
6/20/95	WT012	2	0	.1216	11.5	25.0
6/21/95	WT015	2	0	.1695	11.3	26.0
7/14/95	WT038	2	0	.0281	14.3	26.8
7/19/95	WT045	2	0	2219	11.4	27.2
6/22/95	WT017	7	0	.1760	11.9	27.4
7/14/95	WT040	2	0	.0467	14.7	28.8
7/14/95	WT039	7	0	2172	12.2	29.0
7/12/95	WT034	2	0	.1738	13.0	29.8
7/18/95	WT041	2	0	2238	12.5	29.9
7/13/95	WT037	2	0	.1942	12.9	30.2
6/28/95	WT025	7	0	4891	10.9	30.3
7/13/95	WT036	2	0	.2405	12.5	30.4
7/19/95	WT044	2	0	.0018	19.1	30.4
7/18/95	WT042	2	0	.3416	12.4	32.2
/95	WT050	2		.1031	12.0	25.7
7/18/95	WT043	2		.0531	13.1	26.1
6/22/95	WT018	2	-	.1970	11.2	26.2
7/27/95	WT055	2		0400	14.0	27.1
7/06/95	WT032	2		0046	17.3	28.7
6/26/95	WT019	2	-	.0547	14.6	29.2
7/27/95	WT054	2		.1596	13.7	31.1
6/27/95	WT021	ы		0862	15.4	32.4
6/21/95	WT016	7		.0355	16.9	32.4
6/27/95	WT022	2	-	.1606	15.1	34.4
7/20/95	WT046	n	0	.1157	14.9	32.3
5/31/95	WT001	e	0	.2876	13.0	32.4
R/20/05	00020					

Table D.0 - 1995 aerodynamic roughnesses and observed initiation velocities for elevated PM-10 (spike velocities) Sorted by major soil group

ø _	<b>_</b>											:							1												
Extrapolated spike velocity at z=10m (mph)	22.9	25.3	25.6	29.8	30.1	30.2	30.5	31.9	39.1	19.5	28.6	14.5	18.4	19.9	26.2	28.7	29.4	29.6	39.1	26.5	27.1	31.5	35.3	12.4	23.4	25.3	27.1	28.9	31.0	31.3	32.5
PME 10 spate velocity <b>BE 2013</b> (moh)	12.1	10.6	13.0	12.5	11.8	13.6	14.2	12.8	16.5	12.1	10.7	10.3	9.5	11.1	13.6	14.1	12.1	14.5	16.5	12.3	12.8	13.7	14.7	6.7	10.7	14.4	13.8	13.4	13.2	13.5	15.3
	.0300	.2226	.0489	.2189	.3139	.1403	.1081	.2891	.2127	.0027	.4099	.0001	.0395	.0169	.0394	.0690	.2453	.0658	.2127	.1053	.0930	.1727	.2319	.0234	.1176	.0116	.0487	.1068	.1996	.1863	.0964
	0	0	0	0	0	0	0	0	0		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9	5	S	ß	S	5	S	ъ	ŝ	S	ŝ	9	9	9	9	9	Ð	9	9	7	7	7	7	ω	8	ω	œ	ω	æ	ω	œ
8	WT069	WT064	WT065	WT023	WT062	WT033	WT070	WT063	WT007	WT071	WT061	WT002	WT011	WT028	WT026	WT066	WT030	WT027	WT003	WT074	WT072	WT047	WT073	WT010	WT006	WT008	WT051	WT014	WT004	WT052	WT009
	8/08/95	8/04/95	8/03/95	6/27/95	8/02/95	7/07/95	8/09/95	8/02/95	6/09/95	8/14/95	8/02/95	6/01/95	6/18/95	6/30/95	6/29/95	8/03/95	6/30/95	6/29/95	6/01/95	8/18/95	8/14/95	7/20/95	8/15/95	6/19/95	6/08/95	6/08/95	7/25/95	6/21/95	6/07/95	7/25/95	6/09/92

Table D.0 - 1995 aerodynamic roughnesses and observed initiation velocities for elevated PM-10 (spike velocities) Sorted by major soil group

a E								<u> </u>					r i										
Extrapolated spike velocity at z=10m	(udu)	19.1	22.0	22.3	23.6	23.7	24.6	25.1	27.3	27.6	27.7	27.8	28.9	32.3	37.1	20.8	23.2	25.7	27.6	30.7	31.7	18.2	23.5
PM-10 spike velocity at z=7.6 cm	(mph)	11.5	11.9	11.1	12.7	13.5	12.0	13.3	11.5	12.7	13.5	12.2	15.7	13.1	14.3	11.5	12.2	11.2	13.6	13.8	12.5	9.6	11.8
Abrodynamic roughness: 20	l (em)	.0043	.0227	.0588	.0251	.0112	.0707	0312	.2158	.1146	.0733	.1666	.0223	.2628	.3493	.0172	.0334	.1691	.0654	1395	.3099	.0323	.0511
Unertite Contined						+		· · · · · · · · · · · · · · · · · · ·			-	1		1	L	0	0	0	0	0	0	1	
duoio aos		8	80	8	80	æ	æ	80	8	8	æ	80	80	æ	æ	6	6	6	6	6	6	6	8
<b>9</b> 7		WT005	WT053	WT031-F	WT056	7/10/95 WT031-G	WT031-B	WT031-H	WT013	WT031-C	WT031-A	7/07/95 WT031-E	WT057	WT031-D	WT020	WT060	WT076	WT058	WT077	WT059	WT075	WT078	WT024
8		6/08/95	7/26/95		7/28/95	7/10/95	7/05/95	7/10/95	6/20/95	7/05/95	7/05/95	7/07/95	7/28/95			8/01/95	8/30/95	7/31/95	8/30/95	8/01/95	8/18/95	9/01/95	6/28/95

## Statistical summary of aerodynamic roughnesses and PM-10 spike velocities All soils Table D.1

computed           aero roughness (cm)         spike velocity @ 7.6 cm (mj           aero roughness (cm)         spike velocity @ 7.6 cm (mj           aero roughness (cm)         0.0027           td.dev         0.0139           std.dev         0.1898           o.4099         0.4099				
aero roughness (cm) 0.0027 0.0139 0.0139 0.1898 0.4099				extrapolated
0.0027 0.0139 0.0514 0.1898 0.1898	category		spike velocity @ 7.6 cm (mph)	spike velocity @ 10 m (mph)
0.0027 0.0139 0.0514 0.1898 0.4099				
0.0139 0.0514 0.1898 0.4099	minimum	0.0027	9.6	18.2
0.0514 0.1898 0.4099	mean - 1 std.dev	0.0139	11.3	22.2
0.1898	mean	0.0514		
6607 0	mean + 1 std.dev	0.1898	14.9	31.3
	maximum	6607.0	17.3	37.1

city @ 7.6 cm (mph) 6. 10. 13. 19.				
aero roughness (cm)         spike velocity @ 7.6 cm (mph)           0.0001         6.           0.0012         10.           0.0712         12.           0.4106         14.           0.4899         19.			computed	extrapolated
0.0001 6. 0.0124 10. 0.0712 0.4106 14. 0.4899 19.	category		spike velocity @ 7.6 cm (mph)	spike velocity @ 10 m (mph)
0.0001 0.0124 0.0712 0.4106 0.4899				
0.0124 0.0712 0.4106 0.4899	minimum	0.0001	6.7	12.4
0.0712 0.4106 0.4899	mean - 1 std.dev	0.0124		
0.4106 0.4106 1	mean	0.0712		27.0
0.4899	mean + 1 std.dev	0.4106		33.4
	maximum	0.4899		39.1

Statistical summary of aerodynamic roughnesses and PM-10 spike velocities Soil Group 2 Table D.2

		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph)	spike velocity @ 10 m (mph)
minimum	0.0046	11.2	25.7
mean - 1 std.dev	0.0207	12.4	5.92
mean	0.0621	14.2	29.2
mean + 1 std.dev	0.1858	16.3	32.4
maximum	0/61.0	17.3	34.4

對於 把這一計算成者的改善			
		computed e)	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph)  spike velocity @ 10 m (mph)	pike velocity @ 10 m (mph)
minimum	0.0001	10.9	17.3
mean - 1 std.dev	0.0062	<b>1</b> ,	22.5
mean	0.0547	12.6	26.6
mean + 1 std.dev	0.4853	14.4	31.5
maximum	0.4891	19.1	32.2

## Statistical summary of aerodynamic roughnesses and PM-10 spike velocities Soil Group 3 Table D.3

category	aero roughness (cm)	aero roughness (cm) spike velocity @ 7.6 cm (mph) spike velocity @ 10 m (mph)	spike velocity @ 10 m (mph)
minimum	N/A	NA	N/A
mean - 1 std.dev	N/A	N/A	N/A
mean	0.0121	13.6	24.0
mean + 1 std.dev N/A		N/A	N/A
maximum	N/A	N/A	N/A

		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph)  spike velocity @ 10 m (mph)	spike velocity @ 10 m (mph)
minimum	0.1157	13.0	
mean - 1 std.dev	0.0958	12.6	32.3
mean	0.1824	13.9	32.4
mean + 1 std.dev	0.3473	15.3	
maximum	0.2876	14.9	32.4

## Statistical summary of aerodynamic roughnesses and PM-10 spike velocities Soil Group 5 Table D.4

category	aero roughness (cm)	computed spike velocity @ 7.6 cm (mph) spike velocity @ 10 m (mph)	extraporated spike velocity @ 10 m (mph)
minimum	0.0027	10.7	19.5
mean - 1 std.dev	6000'0	10.4	18.0
uteuu	0220	11.3	23.6
mean + 1 std.dev	1.1636	12.4	30.9
maximum	0.4099	12.1	28.6

		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph) spike velocity @ 10 m (mph)	spike velocity @ 10 m (mph)
minimum	0.0300	10.6	
mean - 1 std.dev	0.0620	11.4	25.0
mean	0.1402	12.9	29.2
mean + 1 std.dev	0.3168	14.6	34.1
maximum	0.3139	16.5	

Statistical summary of aerodynamic roughnesses and PM-10 spike velocities Soil Group 6

		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph)	spike velocity @ 10 m (mph)
minimum	N/A	N/A	N/A
mean - 1 std.dev	N/A	N/A	N/A
mean	N/A	N/A	NA
mean + 1 std.dev	N/A	N/A	N/A
maximum	N/A	N/A	N/A

		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph) spike velocity @ 10 m (mph)	spike velocity 🕲 10 m (mph)
minimum	0.0001	9.9	14.5
mean - 1 std.dev	0.0018	10.3	17.9
mean	0.0273	12.5	24.6
mean + 1 std.dev	0.4050	15.1	6.65
maximum	0.2453	16.5	39.1

.

Table D.5

Statistical summary of aerodynamic roughnesses and PM-10 spike velocities Soil Group 7

		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph)	
minimum	N/A	N/A	N/A
mean - 1 std.dev	N/A	N/A	N/A
mean	N/A	NA	N/A
mean + 1 std.dev	N/A	N/A	N/A
maximum	N/A	N/A	N/A

		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph) spike velocity @ 10 m (mph)	spike velocity @ 10 m (mph)
minimum	0:030	12.3	26.5
mean - 1 std.dev	0.0918	12.4	26.1
mean	0.1407	13.3	29.9
mean + 1 std.dev	0.2157	14.4	34.2
maximum	0.2319	14.7	35.3

Table D.6

## Statistical summary of aerodynamic roughnesses and PM-10 spike velocities Soil Group 8 Table D.7

		an a	
		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph)  spike velocity @ 10 m (mph)	spike velocity @ 10 m (mph)
minimum	0.0043	11.1	19.1
mean - 1 std.dev	0.0153	11.6	22.0
mean	0.0548	12.7	26.0
mean + 1 std.dev	9961'0	14.0	30.8
maximum	6646.0	15.7	37.1

		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph)	spike velocity @ 10 m (mph)
minimum	0.0116	6.7	12.4
mean - 1 std.dev	0.0255	9.4	18.7
mean	0.0703	12.3	25.5
mean + 1 std.dev	0.1934	16.0	
maximum	0.1996	15.3	32.5

## Statistical summary of aerodynamic roughnesses and PM-10 spike velocities Soil Group 9 Table D.8

		computed	extra bolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph) spike velocity @ 10 m (mph)	spike velocity @ 10 m (mph)
minimum	0.0323	9.6	18.2
mean - 1 std.dev	0.0294	9.2	17.3
mean	0.0406	10.7	20.7
mean + 1 std.dev	0.0562	12.4	24.8
maximum	0.0511	11.9	23.5

		a benerista in constructioner interesti and an antication and an and and and and and and and and	
		computed	extrapolated
category	aero roughness (cm)	spike velocity @ 7.6 cm (mph) spike velocity @ 10 m (mph)	spike velocity @ 10 m (mph)
minimum	0.0172	11.2	20.8
mean - 1 std.dev	0.0273	11.4	
mean	0.0806	12.4	26.3
mean + 1 std.dev	0.2382	13.5	31.0
maximum	0.3099	13.8	31.7

#### Section E - 1998-1999 wind tunnel emission factors for Stabilized surfaces

#### A. Explanation of Tables

The wind tunnel mass balance diagram and the list of mass balance equations (see Section 1) summarize the manipulations of wind tunnel flow data, TSI Dust-Trak^(r) concentration data, assumed PM-10 background concentration and tunnel floor dimensions that were employed to compute PM-10 fluxes from the stabilized soil surfaces during Phase I and Phase II.

Phase I took place from August 1998 through December 1998. During wind tunnel testing, the tunnel was run at only velocity on each treated surface. To catch the effects of weathering over time, the tunnel was run once on a treated surface, and then moved to the next treatment. After all 10 surfaces had been tested, the cycle was repeated, the tunnel was returned to the first treated plot, run once, and again moved to the next plot.

Phase I was terminated after inundations of the test location with flood water from four El Nino-associated storms in September and October, and after a freezing and inundation with snowfall from a La Nina-associated storm in December. It was the opinion of the investigator that weathering of the suppressant-treated surfaces under these conditions was not "typical" for southern Nevada, and Phase I was terminated at the end of December.

At the end of Phase I, suppressant was completely removed from all of the surfaces (except for RAP). After removal of all suppressant and crust, the plot that had been treated with lignin sulfonate surface was tested with the wind tunnel prior to reapplication of dust suppressants. This was done to determine the baseline emissions of the untreated, uncrusted surfaces prior to application of suppressants in Phase II.

Phase II took place from February through June of 1999. During Phase II, the tunnel was run several times on each test plot before being moved to the next surface. Additionally, surfaces of the plots were torn up by a pick-up truck tire, and the torn-up sections were tested. Results for Phase II are available as both not torn-up (intact surface) and as torn-up (partially abraded surface) throughout the testing period.

Table E.1 reviews the constants and conversion factors used in PM-10 flux calculations. The cyclone flow is nearly constant at 40 cfm because it is drawn through a venturi that chokes the flow at 40 cfm regardless of atmospheric density. A PM-10 atmospheric background concentration of 20 mg/m³ was assumed.

Tables E.2 through E.11 are organized as follows by dust suppressant for Phase II, not spike-corrected data, both not torn-up and torn-up.

- Table E.2Magnesium chloride
- Table E.3 Double water
- Table E.4Lignin sulfonate
- Table E.5 PennzsuppressD^(r)
- Table E.6 Rohm & Haas acrylic polymer
- Table E.7 Hydroseed
- Table E.8Recycled asphalt product (RAP)
- Table E.9Control (surface crusted)
- Table E.10 Plastex^(r)
- Table E.11 Soil Sement^(r)

Tables E.2 through E.11 show, for each suppressant applied during Phase II (February 1999 through June 1999), the run date, the wind tunnel run number, the run duration (minutes), soil surface condition (torn up = 1, not torn up = 0), extrapolated wind speed at 10 mph for the run (based on measured aerodynamic roughness), measured average PM-10 concentration (in mg/m³) for the run, wind tunnel total volumetric flow rate (cubic feet per minute), and computed not spike-corrected flux in milligrams/square meter/minute (mg/m²/min) and in ton/acre/hour.

Tables E.12 through E.22 are organized as follows for Phase I, not spike corrected data, not torn-up.

- Table E.12Magnesium chloride
- Table E.13 Double water
- Table E.14Lignin sulfonate
- Table E.15 PennzsuppressD^(r)
- Table E.16Rohm & Haas acrylic polymer
- Table E.17 Hydroseed
- Table E.18Recycled asphalt product (RAP)
- Table E.19Control crusted
- Table E.20 Control uncrusted
- Table E.21 Plastex^(r)
- Table E.22Soil Sement(r)

Tables E. 12 through E.22 show, for each suppressant applied during Phase I, (August 1998 through December 1998), the run date, the wind tunnel run number, the run duration (minutes), soil surface condition (torn up = 1, not torn up = 0), extrapolated wind speed at 10 mph for the run (based on measured aerodynamic roughness), measured average PM-10 concentration (in mg/m³) for the run, wind tunnel total volumetric flow rate (cubic feet per minute), and computed flux in milligrams/square meter/minute (mg/m²/min) and in ton/acre/hour.

Tables E.23 through E.26 are organized by wind speed category for Phase II stabilized surface, not torn-up fluxes, averaged over the several dust suppressants:

Table E.23	15-19.9 mph
Table E.24	20-24.9 mph
Table E.25	25-29.9 mph
Table E.26	30-34.9 mph

Tables E.23 through E.26 show the computations of geometric mean non-spike corrected flux in each wind speed category for the Phase II testing. The geometric mean fluxes were averaged across all Phase II applied dust suppressants, except for RAP (which had not been reapplied, and would not typically be used to stabilize vacant lands), Hydroseed (which would not typically be used to suppress dust in short-term applications), and the control (which had not been treated with any suppressant).

Since the tunnel was never operated in the same place for more than one run, cumulative fluxes were not computed for the stabilized surfaces. (In comparison, during the 1995 field study, the wind tunnel was operated in the same place for three or four runs at progressively increasing wind speeds, so cumulative fluxes were computed. See Section 1 and Sections A through C, for the methodology of computation of cumulative fluxes and for the results).

Tables E.27 through E.33 are organized by wind speed category for Phase I stabilized surface, not torn-up fluxes, averaged over the several dust suppressants:

Table E.27	5 - 9.9 mph
Table E.28	10-14.9 mph
Table E.29	15-19.9 mph
Table E.30	20-24.9 mph
Table E.31	25-29.9 mph
Table E.32	30-34.9 mph
Table E.33	35-39.9 mph

Tables E.27 though E.33 show the computations of geometric mean non spike-corrected flux in each wind speed category for the Phase I testing. The mean fluxes were averaged across all Phase I applied dust suppressants, except for RAP (which would not typically be used to stabilize vacant lands), Hydroseed (which would not typically be used to suppress dust in short-term applications), and the control (which had not been treated with any suppressant).

At the end of Phase I, the lignin sulfonate surface was torn-up and fluxes were measured for the surface without any suppressant or crust present. These runs were performed to generate baseline, untreated surface data prior to the reapplication of suppressants in Phase II. Records for these runs are marked with an asterisk(*) in Table E.14 and in Tables E.28, E.29 and E.30. As these torn-up surfaces had much higher fluxes than the treated surface, Phase 1 fluxes were computed for two cases. Case 1 included the torn-up surface runs in the computations of average flux in each wind speed category. Case 2 excluded the torn-up surface runs from the computations of average flux in each wind speed category.

Tables E23 through E33 were generated by running queries to extract all records for each wind speed category for each experimental Phase in a MS Access^(r) database of the wind tunnel flux data.

Tables E.34 through E.38 summarize data presented in earlier tables. They are organized as follows:

Table E.34 - Phase I fluxes	not-torn up	not spike-corrected, compared to Phase II
Table E.35 - Phase II fluxes	not torn up	not spike-corrected
Table E.36 - Phase II fluxes	not torn up	spike-corrected
Table E.37 - Phase II fluxes	torn-up	not spike-corrected
Table E.38 - Phase II fluxes	torn-up	spike-corrected

Table E.34 summarizes and compares Phase I and Phase II not torn-up, not spikecorrected fluxes previously presented in Tables E.23 through E.33. It presents geometric mean - 1 standard deviation, geometric mean, and geometric mean + 1 standard deviation values. Each entry in Table E.34 is referenced to the table number (23 through 33) where the computations are carried out. Geometric means were computed instead of arithmetic means because the data sets of fluxes in each 5 mph wind speed range were all strongly right-skewed. Arithmetic means and arithmetic standard deviations did not adequately describe the data, as computations of arithmetic mean - 1 standard deviation would often produce negative results.

Given the unusual weathering (flood inundation and snow) experienced by the Phase I surfaces, it is felt that the Phase II surfaces more realistically represent typical surface treatments that would be initially applied and then weather in the Las Vegas Valley. *It is recommended that Phase II emission factors be used for stabilized lands, and not the Phase I factors.* Phase I data are presented here for completeness and for comparison to Phase II.

Both Phase I and Phase II data were processed for spike removal. However, since use of Phase II factors is recommended, the only spike-corrected stabilized surface data presented in this report are for Phase II. The effects of spike correction on the Phase II data were found to be small

Tables E.35 and E.36 present the Phase II emission factors for intact treated surfaces (not torn up by the truck tire). Table E.35 contains data not corrected for effects of the initial "spike" of high PM-I0. Table E.36 contains data corrected for effects of the spike.

Tables E.37 and E.38 present the Phase II emission factors for treated surfaces, *torn up* by the truck tire. Table E.37 contains data not corrected for effects of the initial "spike" of high PM-10. Table E.38 contains data corrected for effects of the spike.

#### **B. Explanation of Figures**

Figures E1 through E12 graphically display data from Tables E.34 through E.38, so that the reader may visually compare means and dispersions for the stabilized surfaces.

Relationships between data in Figures and Tables are:

Figure	Table	Description
El	E.34	Phase I stabilized not spike-corrected fluxes
E2	E.34	Phase I stabilized not spike-corrected fluxes - same scale as Fig E3
E3	E.35	Phase II stabilized not spike-corrected fluxes - not torn up
E4	E.36	Phase II stabilized spike-corrected fluxes - not torn up
E5	E.37	Phase II stabilized not spike-corrected fluxes - torn up
E6	E.37	Phase II stabilized not spike-corrected fluxes - torn up - scale as Fig E3
E7	E.38	Phase II stabilized spike-corrected fluxes - torn up - same scale as Fig E5
E8	E.38	Phase II stabilized spike-corrected fluxes - torn up - same scale as Fig E6
E9	E.36	Phase II spikes (ton/acre) - not torn up - 1/1000 scale of Figs C3 and C4
E10	E.38	Phase II spikes (ton/acre) - torn up - 1/10 scale of Figs C3 and C4
E11	E.35-E.36	Phase II fluxes - not spike-corrected v. spike-corrected - not torn up
E12	E.37-E.38	Phase II fluxes - not spike-corrected v. spike-corrected - torn up

Figures E1 and E2 depict Phase I stabilized not spike-corrected fluxes, and are generated from Table E.34. In this case, "not spike-corrected" means that the PM-10 concentration "spike" observed at the beginning of a wind-tunnel run has not been removed prior to computing hourly average fluxes.

Figure E.3 depicts Phase II stabilized not-spike corrected fluxes, (Table E.35) plotted on the same scale as Figure E2 so that Phase I and Phase II data may be directly compared. Figure E3 shows that Phase II stabilized fluxes were lower than Phase I stabilized fluxes.

Relative magnitudes of Phase I and Phase II fluxes may be best compared by examining Table E.34 and by comparing Figures E2 and E3. In general, Phase I fluxes were higher than in Phase II. Typical treated surface PM-10 flux values are on the order of  $6\times10^{-4}$  ton/acre/hour for Phase I and  $3\times10^{-4}$  ton/acre/hour for Phase II; however, the standard deviations are very large.

In the case of intact surfaces treated with dust suppressant, the presence of the spike was assumed to be small. This assumption was tested for the Phase II by subsequent processing of the data to remove the spike.

Figure E4 depicts Phase II stabilized *spike-corrected* fluxes from intact surfaces, and is generated from Table E.36. In this case, "not spike-corrected" means that the PM-10 concentration "spike" observed at the beginning of a wind-tunnel run has not been removed prior to computing hourly average fluxes. In the case of intact surfaces treated

with dust suppressant, the presence of the spike was assumed to be small. This assumption will be tested by subsequent processing of the data to remove the spike.

Figures E5 and E6 depict Phase II, *not spike-corrected* fluxes from the surfaces torn up by the truck tire (Table E.37). Figure E6 replots the Figure E5 data on the same scale as Figure E3 so that not torn up (Figure E3) and torn-up results (Figure E6) may be directly compared.

Figures E7 and E8 depict Phase II, *spike-corrected* fluxes from the surfaces torn up by the truck tire (Table E.38). Figure E7 plots the spike-corrected data on the same scale as Figure E5, so that spike-corrected (Figure E7) and not-spike corrected (Figure E5) results may be directly compared.

Figure E8 replots the Figure E7 data on the same scale as Figures E6 and E3 so that tornup spike-corrected (Figure E8), torn-up not spike corrected (Figure E6), and not torn-up (not-spike corrected -Figure E3) may be directly compared.

Figure E9 presents the Phase II not torn-up spike data in ton/acre, (Table E.36) plotted on 1/1000 the scale of the spike data for unstable and stable native desert (Figures C3 and C4), and shows that not-torn up stabilized surface spike data are very small, about I/1000 the magnitude of spikes measured from unstable or stable native desert.

Figure E10 presents the Phase II *torn-up* spike data in ton/acre, (Table E.38) plotted on 1/10 the scale of the spike data for unstable and stable native desert (Figures C3 and C4), and shows that torn up stabilized surface spike data are about 1/10 the magnitude of spikes measured from unstable or stable native desert. After a modest amount of abrasion, stabilized surfaces still produce somewhat less PM-10 than native desert.

Figure E11 graphically compares not spike-corrected and spike-corrected *not torn-up* Phase II stabilized land PM-10 emission factors (fluxes in ton/acre/hour) for three windspeed categories (Tables E.35 and E.36). It shows that spike-removal processing produced spike-corrected means somewhat lower than not-spike corrected; however, at 15-19.9 mph (plotted as 17.5) and 25-29.9 mph (plotted as 27.5), the not-spike corrected and spike-corrected distributions show considerable overlap. At 20-24.9 mph (plotted as 22.5), the distributions show less overlap. Subsequent statistical analyses will determine if the means in the 20-24.9 mph category are significantly different.

Figure E12 graphically compares not spike-corrected and spike-corrected *torn up* Phase II stabilized land PM-10 emission factors (fluxes in ton/acre/hour) for three wind-speed categories (Tables E.37 and E.38). The data need to be replotted on a finer scale to compare the means, but, within each wind-speed category, the distributions show considerable overlap.

<b>T</b>
ш
Ð
ā
La La
•

ltem	Value	Units	Uncertainty +/-
cuclona flow			
packground PM-10	0.020	0.020 mg / m3	0.010
conversion factor	0.305	0.305 m / ft	0.0002
conversion factor	1000	1000 ug / mg	exact
conversion factor	2.205E-06 lb / mg	lb / mg	.001E-06
conversion factor	5.000E-04 ton / lb	ton / lb	exact
conversion factor	43560	43560 ft2 / acre	exact
conversion factor	4047	4047 m2 / acre	
conversion factor	60	60 min / hr	exact
tunnel floor area	2.500 ft2	12	0.013
tunnel floor area	0.232 m2	m2	0.001
derived conversion	2.68E-04	2.68E-04 (ton/acre/hr)/(mg/m2/min)	
CULIVEI SIUIT LACIOL	1. UUE-UG KG/MG	kg/mg	
conversion factor	10000	10000 m2/hectare	
derived conversion	1 005 03	(ka m)//ma hoatara/	
	1.005-02	1.UUE-UZ (Kg-mZ)/(mg-hectare)	

spike corrected
ĕ
Ξ.
filmes
=
Phase
Chloride
Magnesium

	F	I Duration (min) Tran 11n (v=1 n=0)	[ U10 (moh)   Ava. Cono. (ma/m ⁻³ )	3)   Qactual (m'Umin)		L ILA LUNE AND AND T
<u>-</u>	0		24 9	1	-4.86E-01	-1.30E-04
19-Mar-99 1096		-		150 7	-2 435-01	-6 50F-05
9-Mar-99 1096	6 MgCI	10				
9-Mar-99 1097		5		67294	0.000-01	
+		10 0	23.3 0.065	462.5	2.76E+00	1.3/E-04
			21.4 0.022	461.9	1.22E-01	3.27E-05
-	+-			461.9	6.12E-02	1.64E-05
+			;	463.2	1.84E+00	4.92E-04
-				7637	6 75F-01	1 BOE-04
19-Mar-99 1099		10 0		ALE 2	0 36F-M	2 50F-03
20-Mar-99 1146	6 MgCI	5 0		P I		
-		10 0		455.3	3.505+00	10-11-0-22
+		5	28.5 0.047	466.9	1.67E+00	4.46E-04
		10 1	28.5 0.043	466.9	1.42E+00	3.80E-04
		5	25.6 0.032	470.7	7,47E-01	2.00E-04
				470.7	3.11E-01	8.33E-05
-+-			25.3 0.285	467.7	1.64E+01	4.39E-03
+				467.7	1.17E+01	3.13E-03
20-Mar-99 1149				168.3	2 40F +01	6.43E-03
20-Mar-99 1150				6 927	1 276 102	3 67E-07
20-Mar-99 1150	SO MgCI	1		400.0	1.01 504	
╞		5 1		468.8	1.ZZE+01	0.705-00
+	-	10 1	24.5 0.165	468,8	9.00E+00	2.41E-03
-		<u> </u>	23.2 0.063	450.6	2.57E+00	6.88E-04
+			23.2 0.057	450.6	2.21E+00	5.92E-04
+				453.5	1.50E+00	4.02E-04
-+				453.5	2.41E+00	6.44E-04
-+				453.9	3.01E+00	8.05E-04
-	-			453.9	6 14E+00	1.64E-03
-+				456.5	3 15E+00	8.42E-04
	_		22.1 22.1	456.5	7.99E+01	2.14E-02
+	-+			457.5	4.91E+00	1.31E-03
-+-				457.5	2 37E+00	6.33E-04
9. Jun-99   1183	NaCl			>>		

Double water Phase II fluxes - not spike corrected

	Run #	Suppressint	Duration (min)	Tom Up (v=1, n=0)	Up (v=1, n=0)   U10 (mph)	Ava. Conc. (mg/m^3)	Qactual (fr/3/min)	Flux (mg/(m^2"min)	Flux (torv(acremn)
6	1105	Double Water	2		25.2	0.043	457.2	1.39E+00	3.73E-04
-	1105	Double Water	10	0	25.2	0.028	457.2	4.85E-01	1.30E-04
	1106	Double Water	2	0	22.4	0.044	464.9	1.48E+00	3.95E-04
	1106	Double Water	10	0	22.4	0.030	464.9	6.16E-01	1.65E-04
+	1107	Double Water	2	0	22.0	0.032	461.9	7.34E-01	1.96E-04
+	1107	Double Water	10	0	22.0	0.029	461.9	5.51E-01	1.47E-04
	1108	Double Water	9	0	25.4	0.039	459.7	1.16E+00	3.10E-04
+	1108	Double Water	10	0	25.4	0.027	459.7	4.26E-01	1.14E-04
	1109	Double Water	5	0	19.6	0.037	458.4	1.03E+00	2.76E-04
	1109	Double Water	10	0	19.6	0.050	458.4	1.82E+00	4.88E-04
1_	1157	Double Water	2		21.8	0.882	445.8	5.11E+01	1.37E-02
+ .	1157	Double Water	10		21.8	2.154	445.8	1.26E+02	3.38E-02
	1158	Double Water	2	4	27.1	0.542	453.2	3.14E+01	8.39E-03
-	1158	Double Water	10	<b>~</b>	27.1	1.036	453.2	6.11E+01	1.63E-02
+	1159	Double Water	2	1	17.6	4.613	452.0	2.75E+02	7.37E-02
	1159	Double Water	10	*	17.6	3.708	452.0	2.21E+02	5.92E-02
+	1160	Double Water	5		25.6	0.433	454.0	2.49E+01	6.65E-03
+	1160	Double Water	10		25.6		454.0	1.43E+02	3.84E-02
+	1161	Double Water	5		26.9		471.6	1.89E+01	5.05E-03
+	1161	Double Water	10	-	26.9	2.568	471.6	1.59E+02	4.25E-02
+	1171	Double Water	2		18.6	0.281	465.6	1.61E+01	4.30E-03
-	1171	Double Water	10		18.6	1.167	465.6	7.07E+01	1.89E-02
	1172	Double Water	2		14.9	1.100	465.7	6.66E+01	1.78E-02
+	1172	Double Water	10	1	14.9	1.827	465.7	1.11E+02	2.98E-02
8-1un-99	1175	Double Water	5	<b>L</b>	27.9	0.197	455.9	1.07E+01	2.86E-03
8-hin-99	1175	Double Water	10		27.9	0.513	455.9	2.98E+01	7.97E-03
8-iun-99	1176	Double Water	2		27.3		459.3	1.93E+01	5.16E-03
+-	1176	Double Water	10	<b>F</b>	27.3		459.3	6.21E+00	1.66E-03
-	1184	Double Water	5		21.5	0.949	456.8	5.63E+01	1.50E-02
ŀ	1184	Double Water	10	-	21.5		456.8	1.40E+01	3.74E-03

Lignin suffonate - Phase Ii fluxes - not spike corrected

Flux (ton/(acre*hr) 2.04E-04 I.72E-03 8.91E-04 3.80E-04 12E-03 3.32E-05 -1.66E-04 4.53E-03 2.04E-04 40E-03 4.93E-04 7.87E-04 6.39E-04 3.79E-04 .96E-03 2.94E-03 1 50E-03 6.25E-04 8 96E-04 4.97E-05 7.66E-04 5.20E-04 3.25E-04 7.91E-03 6.57E-04 5.11E-04 2.16E-03 4.54E-04 60E-03 4.39E-04 6.75E-04 22E-03 74E-03 2.88E-04 8.46E-04 6.41E-04 7.85E-04 4.06E-04 5.30E-04 5.10E-04 Flux (mg/(m^2*min) 1.84E+00 2.94E+00 39E+00 1.91E+00 1.42E+00 8.06E+00 7.31E+00 10E+01 1.42E+00 3.16E+00 2.40E+00 2.94E+00 1.22E+00 25E+00 6.44E+00 3.33E+00 1.70E+00 1.98E+00 1.64E+00 5.62E+00 2.52E+00 4.58E+00 4.17E+00 .91E+00 6.50E+00 2.34E+00 1.08E+00 3.35E+00 -6.20E-01 2.86E+00 1.94E+00 1.52E+00 2.46E+00 .70E+01 61E-01 7.61E-01 35E+01 -1 24E-01 1.86E-01 2.96E+01 Qactual (11-3/min) 448.8 449.3 465.3 475.5 424.6 430.2 430.2 435.2 448,8 451.4 468.9 468.9 468.4 449.5 449.5 451.6 451.6 458.4 458.4 434.9 434.9 439.5 439.5 440.2 440.2 449.3 462.9 462.9 465.3 468.5 468.5 475.5 468.4 424.6 435.2 451.4 447.7 447.7 467. 467 Avg. Conc. (mg/m^3) 0.310 0.033 0.108 0.128 0.049 0.118 0.099 0.129 0.059 0.038 0.074 0.018 0.010 0.023 0.068 0.073 0.060 0.069 0.052 0.045 0.062 0.033 0.051 0.076 0.068 0.059 0.043 0.150 0.138 0.195 0.047 0.043 0.238 0.052 0.041 0.531 0.064 0.092 0.051 0.055 23.9 24.8 18.8 21.3 21.3 27.5 21.0 21.0 21.3 27.5 21.0 21.0 29.5 29.5 21.5 21.5 21.5 23.9 24.8 27.1 27.1 27.1 27.1 29.5 29.5 27.1 21.3 18.8 25.5 18.7 21.2 21.2 23.1 23.1 (40m) 010 27.1 18.7 15.1 15.1 ຮູ Tom Up (y=1,n=0) 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 C 5050 S 0 õ 5 10 5 50 5 0 505 10 S 2 0 ŝ ŝ ŝ 2  $\underline{\circ}$ 5 2 ŝ 2 ်မာ 10 ŝ 2 2 ŝ 2 ŝ 2 ÷ Duration (min) Suppressent Lig Sulfonate Lig Sulfonate Lig Sulfonate Lig Sulfonate Lig Sulfonate Lig Sulfonate Lig Suffonate Lig Sulfonate Lig Suffonate Lig Sulfonate Lig Sulfonate Lig Sulfonate Lig Sulfonate Lig Suffonate Lig Sulfonate Lig Suttonate Lig Sulfonate Lig Sulfonate Lig Sulfonate Sulfonate Lig Suffonate Lig Sulfonate 3 Run # 1143 1145 1145 1139 1140 1140 1143 1144 1145 1146 1149 1150 1142 1142 1143 1049 1049 1053 1068 1066 1068 1136 1138 1138 1139 1142 1147 1148 1141 1144 1 44 1050 1052 1067 1136 1137 1137 14 141 1051 18-May-99 17-May-99 17-May-99 17-May-99 18-May-99 18-May-99 29-Jan-99 22-Feb-99 22-Feb-99 22-Feb-99 22-Feb-99 22-Feb-99 17-May-99 29-Jan-99 29-Jan-99 29-Jan-99 29-Jan-99 22-Feb-99 22-Feb-99 29-Jan-99 22-Feb-99 29-Jan-99 29-Jan-99 29-Jan-99 29-Jan-99 29-Jan-99 29-Jan-99 

Lignin suffonate - Phase II fluxes - not spike corrected

2	Run #	Subpresent	Run # Suppresent Duration (min)	Tom Up (v≖1 h≖	U10 (mah)	Avg. Conc. (mo/m^3)	Qactual (ft ⁴³ /min)	Ftux (mg/(m^2*min)	Flux (ton/(acre*hr)
7-Jun-99	1169	1169 Lia Sulfonate	2	1	27.1	0.024	462.8		6.56E-05
7-Jun-99	1169	Lig Suffonate	10	-	27.1	27.1 0.031 462.8	462.8	6.74E-01	1.80E-04
2-Jun-99		-	5		21.3	0.045	460.1		4.08E-04
66-unr-2	1170	Lig Sulfonate	10		21.3	0.042	460.1		3.59E-04
8-Jun-99	1177		5	+	27.5	0.085	462.9		1.07E-03
8-Jun-99	1177	Lig Sulfonate	10	<b>,</b>	27.5	0.053	462.9		5.41E-04
8-Jun-99	1178	Lia Sulfonate	9		21.0	0.066	477.8		7.76E-04
8-Jun-99		1	10		21.0	0.082	477.8		1.05E-03
9-Jun-99	+	Lig Sulfonate	5	<b>_</b>	29.5	0.065	467.4		7 44E-04
		i	10	<b>_</b>	29.5	0.115	467.4		1.57E-03

Z
S
50
ĕ
÷Š.
5
Ę
•
luxes
Ŧ
ድ
25
£
1
8
ž
8
3
Ž
Ē
ď

Flux (ton/(acre*hr)	1.29E-04	4.03E-04	2.43E-04	1.46E-04	1.63E-04	2 12E-04	1.30E-04	2.44E-04	1.78E-04	9.73E-04	7.57E-04	6.72E-03	1.99E-02	5.90E-02	3.38E-02	1.53E-02	1.57E-02	5.82E-02	1.89E-02	7.77E-02	5.58E-02	1.02E-02	8.83E-03	2.75E-02	3.33E-02	1.34E-02	1.41E-03	2 80E-03	5.59E-03	2.62E-03
Flux (mg/(m^2*min)	4.82E-01	1.51E+00	9.11E-01	5.46E-01	6.10E-01	7.92E-01	4.87E-01	9.13E-01	6.67E-01	3.64E+00	2.83E+00	2.51E+01	7.43E+01	2.21E+02	1.26E+02	5.73E+01	5.87E+01	2.18E+02	7.08E+01	2.91E+02	2.09E+02	3.82E+01	3.30E+01	1.03E+02	1.24E+02	5.00E+01	5.27E+00	1.05E+01	2.09E+01	9.79E+00
Qactual (ft^3/min)	454.6	454.6	457.9	457.9	460.0	460.0	459.5	459.5	457.3	457.3	454.1	454.1	451.9	451.9	459.2	459.2	457.5	457.5	458.5	458.5	466.3	466.3	464.4	464.4	476.8	476.8	462.4	462.4	481.3	481.3
Ub (v=1,n=0) U10 (mph) Avg. Conc. (mp/m^3)	0.028	0.045	0.035	0.029	0.030	0.033	0.028	0.035	0.031	0.080	0.067	0.437	1.259	3.701	2.098	0.962	0.988	3.609	1.185	4,801	3,400	0.639	0.557	1.691	1.995	0.814	0.106	0.191	0.349	0.174
U10 (moh)	16.3	16.3	16.1	16.1	24.1	24.1	16.8	16.8	17.9	17.9	20.6	20.6	22.9	22.9	17.7	17.7	19.0	19.0	17.3	17.3	17.0	17.0	18.4	18.4	23.4	23.4	27.0	27.0	32.0	32.0
Torn Up (v=1,n=0)	0	0	0	0	0	0	0	0	0	0		•				+				-		1	+							
Duration (min)	1.0	101	Υ.	101	5	101		<b>,</b> 0	2	10	9	10	5	101	5	10	5	101		10	S	10	2	101	5	10	C	10	6	10
Supressent	1.	Pann Sunnress	Penn Sunnress	Penn Sunnress	Pann Sunnress	Pann Sunnress	Pann Suppress	Pann Sunnress	Penn Sunnress	Penn Sunnress	Penn Suppress	Penn Suppress	Penn Suppress	Penn Sundress	Penn Suppress	Penn Suppress	Penn Sunnress	Pann Sunnress	Penn Suppress	Penn Suppress	Penn Suppress	Pann Sunnress	Penn Suppress	Pann Suppress	Penn Sunnress	Penn Suppress	Penn Suppress	Penn Sunnress	Penn Suppress	Penn Suppress
Din 4	1001	1001	1001	1001	1003	1003	1004	1001	1005	1095	1182	1162	1163	1163	1164	1164	1165	1165	1166	1166	1187	1187	1188	1188	1189	1180	1190	1100	- 10 - 1-	1196
Data 1	17_Mar_00	17. Mar-00	17 Mar.00	17.Mar.00	17 Mar-00	17 Mar 00	17 Mar.00	17 Mor.00	17-Mar-00	17 Mar.00	1-Jun-99	1_lin_99	1. tim-90	1-1-00	1-111-99	1-1-00	1 110 00		10-1-0	10- 11-00	10-11-00	10-110-00	10-110-00	10-11-00	10-110-00		16-11-00	16.1.00	16-110-99	16-Jun-99

Rohm Haas Acrylic Polymer - Phase II fluxes - not spike corrected

Flux (ton/(scre*hr) 72E-04 -3.20E-05 2.88E-04 3.62E-03 9.62E-05 6.14E-03 32E-03 27E-03 36E-04 5.96E-04 6.41E-05 4.33E-04 6.96E-04 ,76E-04 3.04E-04 92E-04 1.41E-03 9.62E-05 4 48E-04 1.04E-03 2.17E-03 2.26E-03 72E-03 2.41E-03 7.32E-04 6.15E-04 1 92E-04 5.34E-04 8.83E-04 36E-04 Fkx (mg/(m^2+min) 2.75E+00 2.74E+00 -1.20E-01 1.08E+00 I.62E+00 2.30E+00 2.60E+00 6.57E-01 1.14E+00 02E+00 5.26E+00 1.68E+00 2.00E+00 2.29E+01 3.30E+00 90E+00 8.10E+00 8.45E+00 6.45E+00 9.00E+00 4.75E+00 2.75E+00 2.23E+00 2.40E-01 .35E+01 7.18E-01 3.60E-01 3.60E-01 7.18E-01 24E+01 Qactual (ft^3/min) 456.6 450.8 456.5 450.2 451.6 451.6 456.6 450.1 450.8 455.9 455.9 452.0 452.0 450.8 450.8 456.5 452.6 452.6 467.1 473.4 472.8 472.8 450.2 450.1 473.4 473.1 467.1 473.1 482.1 482 Ava. Conc. (ma/m^3) 0.038 0.024 0.058 0.063 0.039 0.032 0.244 0.026 0.028 0.032 0.048 0.053 0.399 0.075 0.085 0.155 0.123 0.164 0.096 0.064 0.018 0.047 0.055 0.031 0.037 0.107 0.151 0.221 0.064 0.063 27.8 20.5 21.9 21.9 19.9 19.9 22.8 22.8 25.5 25.5 27.8 24.8 24.8 20.5 20.2 20.2 24.8 24.8 17.0 17.0 16.4 16.4 16.6 16.6 25.1 27.1 25.2 25.2 25.1 27.1 U10 (mph) Tom Up (y=1,n=0) 0 0 0 0 0 0 C С ်ဂြ <u>9</u> ŝ 2 S. 2 20 ŝ ပြုပ 0 9 2 S 2 ŝ 0.0 S 2 s  $\mathbf{D}$ <u>v</u> 0 S 0 Duration (min) Acrylic Polymer Acryfic Polymer Acrylic Polymer Acrytic Polymer Acrylic Polymer Acrylic Polymer Acrylic Polymer Suppresent Rin # 1195 1088 1194 1082 1084 1085 1086 1083 1088 1089 1090 1193 1193 1194 1195 1084 1085 1086 1083 1089 1090 1191 1182 1192 1081 1081 1082 1087 1087 191 10-Mar-99 10-Mar-99 10-Mar-99 10-Mar-99 10-Mar-99 10-Mar-99 10-Mar-99 10-Mar-99 16-Jun-99 5-Mar-99 5-Mar-99 5-Mar-99 5-Mar-99 5-Mar-99 5-Mar-99 5-Mar-99 5-Mer-99 5-Mar-99 5-Mar-99 5-Mar-99 5-Mar-99 

Date	Hun #	Suppressant	Dunation (min)	Tom Up (y=1,n=0)	U10 (mph)	Avg. Conc. (mg/m^3)	Qactual (113/min)	Flux (mg/(m^2*min)	Flux (ton/(acre*
27-Feb-99	1070	Hydroseed	5	}	24.2	0.078	441.6	3.41E+00	9.11E-04
1	1070	Hydroseed	10	0	24.2	0.067	441.6	2.76E+00	7.38E-04
27-Feb-99	1071	Hydroseed	5	0	22.0	0.061	445.3	2.43E+00	6.49E-04
27-Feb-99	1071	Hydroseed	10	0	22.0	0.045	445.3	1.48E+00	3.96E-04
2-Mar-99	1078	Hydroseed	5	0	22.3	3.046	446.6	1.80E+02	4.80E-02
2-Mar-99	1078	Hydroseed	10	0	22.3	2.472	446.6	1.45E+02	3.89E-02
2-Mar-99	1079	Hydroseed	5	0	19.6	2.959	455.0	1.77E+02	4.74E-02
2-Mar-99	1079	Hydroseed	10	0	19.6	2.427	455.0	1.45E+02	3.88E-02
2-Mar-99	1080	Hydroseed	S	0	28.5	2.092	461.2	1.27E+02	3.39E-02
2-Mar-99	1080	Hydroseed	10	0	28.5	1.803	461.2	1.09E+02	2.91E-02
┢	1110	Hydroseed	2	0	28.7	0.032	443.0	7.07E-01	1,89E-04
<u> </u>	1110	Hvdroseed	10	0	28.7	0.027	443.0	4.12E-01	1.10E-04
-	1118	Hydroseed	2	0	27.2	0.035	444.5	8.86E-01	2.37E-04
<u> </u>	1118	Hydroseed	10	0	27.2	0.043	444.5	1.36E+00	3.63E-04
<u> </u>	1119	Hydroseed	2	0	28.1	0.026	439.1	3.50E-01	9.37E-05
15-Apr-99	1119	Hydroseed	10	0	28.1	0.054	439.1	1.99E+00	5 31E-04
	1072	Hydroseed	2	-	32.3	0.049	447.8	1.72E+00	4.61E-04
	1072	Hydroseed	10	-	32.3	0.034	447.8	8.33E-01	2.23E-04
27-Feb-99	1073	Hydroseed	S	Ŧ	311	0.035	449.7	8.96E-01	2.40E-04
27-Feb-99	1073	Hydroseed	10	<b>+-</b>	31.1	0.027	449.7	4.18E-01	1.12E-04
27-Feb-99	1074	Hydroseed	5	-	27.4	VOIDED		VOIDED	
27-Feb-99	1074	Hydroseed	10	-	27.4	VOIDED		VOIDED	
27-Feb-99	1075	Hydroseed	5	-	21.0	VOIDED		VOIDED	
27-Feb-99	1075	Hydroseed	10	-	21.0	VOIDED		VOIDED	
27-Feb-99	1076	Hydroseed	5	F	24.3	VOIDED		VOIDED	
27-Feb-99	1076	Hydroseed	10	•	24.3	VOIDED		VOIDED	
-	1077	Hydroseed	5			VOIDED		VOIDED	
2-Mar-99	1077	Hydroseed	10	F		VOIDED		VOIDED	
6-Apr-99	1111	Hydroseed	5	-	25.1	0.045	446.2	1.48E+00	3.96E-04
6-Apr-99	1111	Hydroseed	0	-	25 1	0 054	446.2	2 02E+00	5 39E-04
	1112	Hydroseed	5	-	24.0	0.155	442.1	7.93E+00	2.12E-03
6-Apr-99	1112	Hydroseed	10	-	24.0	0.332	442.1	1.83E+01	4.90E-03
17-Jun-99	1197	Hydroseed	5	-	23.0	0.182	459.7	9.87E+00	2.64E-03
17-Jun-99	1197	Hydroseed	10	-	23.0	0.355	459.7	2.04E+01	5.46E-03
17-Jun-99	1198	Hydroseed	5	1	25.8	0.151	476.4	8.25E+00	2.21E-03
17-Jun-99	1198	Hydroseed	10	-	25.8	0.377	476.4	2.25E+01	6.01E-03
17-Jun-99	1199	Hydroseed	S	-	29.7	0.639	476.3	3.90E+01	1.04E-02
17-Jun-99	1199	Hydroseed	10	*-	29.7	0.192	476.3	1.08E+01	2.90E-03
17-Jun-99	1200	Hydroseed	S	~	25.3	0.411	471.7	2.44E+01	6.52E-03
17-Jun-99	1200	Hvdroseed	10	•	25.3	0.259	471.7	1.49E+01	3.99E-03

Hydroseed - Phase II fluxes - not spike-corrected

#### Hydroseed - Phase If fluxes - not spike-corrected

				(uam) 010	Ava. Conc. (ma/m^3).		)   Fiux (mg/(m*2~min)	LIUX (WON(SCIE III)
17_him-99_1201 H	Z-hin-99 1201 Hvdroseed		1	29.9	0.229	482.0	1.33E+01	3.56E-03
17_1un_09 1201 H	Hvdroseed	10	-	29.9	0.166	482.0	9.29E+00	2.48E-03
24- hun-00 1207	Hvdrosped	2		27.0	0.116	467.5	5.94E+00	1.59E-03
24-Jun-99 1207 Hvdroseed	Hvdroseed	10	1	27.0	0.060	467.5	2.47E+00	6.62E-04

corrected
spike
- not
Phase II
fluxes -
Rap

	Run #	Suppresent	Duration (min)	Tom Up (y≖1,n=0)	U10 (mph)	U10 (mph) Avg. Conc. (mg/m^3)	Qectuel (ft^3/min)	Flux (mg/(m^2*min)	Flux (ton/(acre*hr)
6-May-99	1131	RAP	5		18.8	0.072	465.7	3.21E+00	8.57E-04
6-May-99	1131	RAP	10	0	18.8	0.047	465.7	1.66E+00	4.45E-04
6-May-99	1132	RAP	\$	0	20.8	0.132	472.4	7.00E+00	1.87E-03
6-May-99	1132	RAP	10	0	20.8	0.050	472.4	1.87E+00	5.01E-04
7-May-99	1133	RAP	5	0		VOIDED		VOIDED	
7-May-99	1133	RAP	10	0		VOIDED		VOIDED	
7-May-99	1134	RAP	5	0	21.2	0.030	476.4	6.30E-01	1.68E-04
7-May-99	1134	RAP	10	0	21.2	0.024	476.4	2.52E-01	6.73E-05
7-May-99	1135	RAP	5	0	20.9	0.017	475.4	-1.88E-01	-5.04E-05
7-May-99	1135	RAP	10	o	20.9	0.023	475.4	1.88E-01	5.04E-05
22-Jun-99	1202	RAP	5	0	16.6	0.077	457.1	3.45E+00	9.24E-04
22-Jun-99	1202	RAP	10	0	16.6	0.081	457.1	3.70E+00	9.89E-04
21-May-99	1152	RAP	5	-	21.7	0.060	450.7	2.39E+00	6.40E-04
21-May-99	1152	RAP	10	-	21.7	0.078	450.7	3.47E+00	9.28E-04
21-May-99	1153	RAP	5	-	23.7	0.062	464.7	2.58E+00	6.91E-04
21-May-99	1153	RAP	10	-	23.7	0.067	464.7	2.89E+00	7.73E-04
21-May-99	1154	RAP	5	-	22.9	0.043	468.5	1.43E+00	3.81E-04
21-May-99	1154	RAP	10	-	22.9	0.032	468.5	7.44E-01	1.99E-04
21-May-99	1155	RAP	2	+	23.1	0.037	476.4	1.07E+00	2.86E-04
21-May-99	1155	RAP	10	F	23.1	0.036	476.4	1.01E+00	2.69E-04
21-May-99	1156	RAP	5	-	24.7	0.036	475.1	1.00E+00	2.69E-04
21-May-99	1156	RAP	10	-	24.7	0.030	475.1	6.28E-01	1.68E-04
22-Jun-99	1203	RAP	5	F	24.5	0.156	474.6	8.53E+00	2.28E-03
22~Jun-99	1203	RAP	10	-	24.5	0.174	474.6	9.66E+00	2.58E-03
22-Jun-99	1204	RAP	5	-	20.7	0.076	471.1	3.49E+00	9.33E-04
22-Jun-99	1204	RAP	10	1	20.7	0.083	471.1	3.93E+00	1.05E-03
22-Jun-99	1205	RAP	5	÷	19.8	0.104	467.5	5.20E+00	1.39E-03
22-Jun-99	1205	RAP	10	1	19.8	0.182	467.5	1.00E+01	2.68E-03
22-Jun-99	1206	RAP	5	-	20.6	0.077	468.7	3.54E+00	9.45E-04
22-Jun-99	1206	RAP	10	-	20.6	0.125	468.7	6.51E+00	1.74E-03
25-Jun-99	1213	RAP	S	F	16.0	0.082	458.8	3.77E+00	1.01E-03
25-Jun-99	1213	RAP	10	-	16.0	0.083	458.8	3.83E+00	1.02E-03

corrected
not spike
<u>_</u>
Phase
fluxes -
Control

3.386+00 9.036-04 1
_
5.53E-01 2.81E+00
5.53E-01 2.81E+00 1.56E+00
5.53E-01 2.81E+00 1.56E+00 2.53E+00
5.53E-01 2.81E+00 1.56E+00 2.53E+00 3.14E+00
5,53E-01 2,81E+00 1,56E+00 2,53E+00 3,14E+00
5.53E-01 2.81E+00 1.56E+00 2.53E+00 3.14E+00 3.14E+00
5.53E-01 2.81E+00 1.56E+00 2.53E+00 3.14E+00 1.72E+01 9.13E+00
5 53E-01 5 53E-01 2 81E+00 1.56E+00 2 53E+00 3 14E+00 9 13E+00 9 13E+00
463.7 472.4 472.4 465.6 465.6 473.0 473.0 457.4
24 3 22 1 22 1 23 4 23 4 23 4 22 0 22 0 18 2
10 5 10
Control
1120
21 - Apr - 83 1120

Plastex fluxes - Phase II - not spike corrected

	0.055 0.055				10 0 23.5 0.055
	0.055	23.5 0.055	0.055	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
CCN.N		24.7	0 24.7	5 0 24.7	Plastex 5 0 24.7
0.057			24.7	10 0 24.7	Plastex 10 0 24.7
0.059	19.8 0.059		19.8	5 0 19.8	Plastex 5 0 19.8
0.058			19.8	0 19.8	Plastex 10 0 19.8
0.069	24.0 0.069	24.0	24.0	5 0 24.0	Plastex 5 0 24.0
0.071 446.9	0.071	0.071	24.0 0.071	10 0 24.0 0.071	Plastex 10 0 24.0 0.071
0.044 452.8		0.044	25.7 0.044	5 0 25.7 0.044	Plastex 5 0 25.7 0.044
0.039 452.8		0.039	0 25.7 0.039	10 0 25.7 0.039	Plastex 10 0 25.7 0.039
0.078 446.5	0.078	0.078	0.078	5 1 20.8 0.078	Plastex 5 1 20.8 0.078
0.491 446.5	0.491	0.491	0.491	10 1 20.8 0.491	Plastex 10 1 20.8 0.491
0.180	26.0 0.180			5 1 26.0	Plastex 5 1 26.0
0,100				10 1 26.0	Plastex 10 1 26.0
0.102			1 19.3	5 19.3	Plastex 5 1 1 19.3
0.134			1 19.3	1 19.3	Plastex 10 1 19.3
0.106	22.8 0.106			5 1 22.8	Plastex 5 1 22.8
0,101				10 1 22.8	Plastex 10 1 22.8
0.109	20.5 0.109			5 1 20.5	Plastex 5 1 20.5
0.082				10 1 20.5	Plastex 10 1 20.5
0.042				5 1 27.1	Plastex 5 1 27.1
0.081			1 27.1	10 1 27.1	Plastex 10 1 27.1
0.155			1 25.5	5 1 25.5	Plastex 5 1 25.5
0.095	25.5 0.095		1 25.5	10 1 25.5	Plastex 10 1 25.5
0.168				5 1 21.3	Plastex 5 1 21.3
0.173	21.3 0.173		1 21.3	10 1 21.3	Plaster 10 1 21.3
0.206			1 23.9	5 1 23.9	Plastex 5 1 23.9
0.226			1 23.9	1 23.9	Plastex 10 1 23.9
0.123	26.2 0.123			5 1 26.2	Plastex 5 1 26.2
0 175	26.2 0.175			10 1 262	Plastex 10 1 26.2

corrected
- not spike
- Phase il
(c) fluxes
Soil Sement(

The local	Annager 1	Therefore (min)	Tom Up N=1 n=01 1 U10 (mph)	U10 (mon) /	Ava. Conc. (mg/m ^{r3} )	Cactual (m's/min)	Flux (mg/(m '2' mm)	LINK (ININ BOOR IN)
		1.		30.2	0.007	459.7	-7.92E-01	-2 12E-04
	+	Ş		205	0.013	459.7	-4.26E-01	-1,14E-04
-	+	2 4		25.2	0.020	462.6	0.00E+00	0.00E+00
_				25.2	0.021	462.6	6.13E-02	1.64E-05
-				100	0.001	4619	6.12E-02	1.64E-05
-+-				20.1	0.019	461.9	-6.12E-02	-1.64E-05
+	-	2		27.4	0.025	461 1	3.05E-01	8.17E-05
-+-			> c	27.4	0.023	461 1	1.83E-01	4 90E-05
22-Mar-99 1103	4 Coil Sement	2.4	> c	24.7	0.024	461.0	2.44E-01	6.53E-05
	+	¢	0	24.7	0.027	461.0	4.28E-01	1.14E-04
-+-			, -	26.6	0.029	462.1	5.51E-01	1.47E-04
+	+	10	-	26.6	0.029	462.1	5.51E-01	1.47E-04
	-			22.2	0.021	465.3	6.16E-02	1.65E-05
+	+	ţ	•	22.2	0.022	465.3	1.23E-01	3.30E-05
	+-			242	0.019	467 1	-6.18E-02	-1.65E-05
43 Amr 00 4145		<b>•</b>	-	24.2	0.020	467.1	0.00E+00	0.00E+00
+-	+-			23.9	0.019	467.5	-6.19E-02	-1.65E-05
+	-	, CL	-	23.9	0.020	467.5	0.00E+00	0.00E+00
-+-	+			26.5	0.025	468.4	3.10E-01	8.29E-05
+	+	10	-	26.5	0.030	468.4	6.20E-01	1.66E-04
+-	-			27.2	0.075	454.1	3.31E+00	8.86E-04
+-				27.2	0.044	454.1	1.45E+00	3.87E-04
7 1 00 1168	+-	2 40	-	22.3	0.046	455.8	1.57E+00	4.20E-04
+		, 1 1	-	22.3	0.037	455.8	1.03E+00	2.75E-04
0 11-33 1100	+-	· · · ·		21.3	0.083	468.7	3.91E+00	1_04E-03
+	-	101		21.3	0.196	468.7	1.09E+01	2.92E-03
╉	+	2		24.5	0.058	471.8	2.37E+00	6.34E-04
+		2 0		24.5	0.126	471.8	6.61E+00	1.77E-03
0 1 00 1 1 00 1 1 86	-			25.0	0.128	466.7	6.67E+00	1.78E-03
	+-	U¢		25.0	0.075	466.7	3.40E+00	9.09E-04

cted
correc
spike
- not
fluxes
_
Phase
chloride
gnesium -
0eN

	Summassant	a u a	Duration (min) U1	(dam) 0	Tom Up (v=1, n=0)	Ava, Conc. (mg/m^3)	Qactual (ft*3/min)	Flux (mg/m^2*min)	Flux (ton/(acre*hr)
0/11/00	Contraction of the second seco	102	1	4		0.039	474.2	1.19E+00	3.19E-04
06/11/0	100M	15	10	901	0	0.03	459.1	4.44E+00	1.19E-03
0/20/30	D BW	130	101	26.0	0	0.151	463.2	8.04E+00	2.15E-03
80/80/8	Dem Vor	137	10	30.1	0	0.094	459.3	4.51E+00	1.20E-03
0/16/98	MoCl	156	5	29.3	0	0:030	467.7	6.19E-01	1.66E-04
9/16/98	MoCl	156	10	29.3	0	0.029	467.7	5.57E-01	1.49E-04
9/25/98	MaCi	171	5	22.4	0	0.033	459.3	7.91E-01	2.12E-04
9/25/98	MaCl	171	10	22.4	0	0.043	459.3	1.40E+00	3.74E-04
10/5/98	MaCi	182	5	8.2	0	0.046	447.1	1.54E+00	4.13E-04
10/5/98	MaCl	182	10	8.2	0	0.113	447.1	5.52E+00	1.48E-03
10/21/98	MaCl	190	5	17.7	0	0.062	439.2	2.45E+00	6.56E-04
10/21/98	MaCl	190	10	17.7	0	0.067	439.2	2.75E+00	7 34E-04
11/4/99	MaCl	1015	<b>S</b>	217	0	0.026	455.1	<b>3.62E-01</b>	9.69E-05
11/4/98	MaCl	1015	10	217	0	0.026	455.1	3.62E-01	9.69E-05
11/6/98	No Cla	1016	2	19.3	0	0.025	433.7	2.89E-01	7.72E-05
11/6/98	MaCl	1016	10	19.3	0	0.027	433.7	4.04E-01	1 08E-04
11/6/98	MaC	1017	<u> </u>	23.3	0	0.023	433.4	1.73E-01	4.63E-05
11/6/98	MaCl	1017	10	23.3	0	0.031	433.4	6.35E-01	1.70E-04

ot spike-corrected
<u>н</u> - 88
e 1 flux
Phase
Double water

		TALAT			Town I to (w=1 n=0) Ava Conc (ma/m^3)	Qactual (ft^3/min)	Flux (mg/m^2*min)	Flux (ton/(acre*hr)
Dete	Liesseudano		Constance in the second		0 223	1	1 99E+01	5.31E-03
8/11/98	Double Water	108	0.62 UT		2.00F			A 44E 0A
80/0C/8	Double Water	114	10 25.1	1 0	0.045	403.9	1.345+00	
	+	001	10 234	0	0.249	465.5	1.41E+01	3.77E-03
06/07/0	-+-	426	10 34 8		0.067	465.4	2.90E+00	7.75E-04
81/28/28			22.22		0.044	470.0	1.49E+00	3.99E-04
9/16/98	Double vater	6			0.095	170.0	0 33F_01	2 49E-04
9/16/98	Double Water	155	10 33.1	0	0.033	N.0.4		2 28E-04
9/25/98	Double Water	170	5 21.1	0	0.034	400, 1		
0/25/98	÷	170	10 21.(	0	0.042	460.1	1.34E+00	J. J9E-U4
10/2/00	+-		5 13	0	0.054	445.9	2.01E+00	5.39E-04
08/0/01		5	13.1	0	0.129	445.9	6.46E+00	1.73E-03
86/0/01		0	25.0		0.104	440.8	4.92E+00	1.32E-03
10/21/98		2	10 25 0		660 0	440,8	4.63E+00	1.24E-03
10/21/98		22			0.026	463.4	3.68E-01	9.85E-05
11/4/98	-+	4101	10.6		0.020	463.4	0.00E+00	0.00E+00
11/4/98	+	4101			0.018	438.6	-2 33E-01	-6.24E-05
11/6/98	Double Water	1018	C.07 C			120 6	3 50E 01	9.36F_05
11/6/98	Double Water	1018	10 26.5	2 0	<u>070'0</u>	0.004	0.00L01	
11/6/98	Double Water	1019	5 28.8	8	0.048	400.4	00+2001	
11/6/08	-	1019	10 28.8	8	0.041	450.9	1.26E+00	3.36E-U4
>>>>								

Lignin Sulfonate Phase i fluxes - not spike corrected

Date	Suppresent	Run	Duration (min) U	U10 (mph)	Tam Up (v=1, n=0)	Avg. Conc. (mg/m^3)	Quectural (R*3/min)	Flux (mg/m^2*min)	Flux (torv(ecre"hr)
8/12/98	Lionin Sulfonate	107	-	34.8	0		471.7	2.54E+01	6.79E-03
8/20/98	Lignin Sulfonate	115	10	14.6			475.6	7.48E+00	2.00E-03
8/25/98	Lionin Sulfonate	128	10	34.9	an an an an Andrew III an an an Andrew An		468.2	3.59E+00	9.61E-04
8/28/98	Lianin Sulfonate	139	10	15.4	0	0,144	476.9	7.81E+00	2.09E-03
9/16/98	Lionin Sulfonate	15	5	13.1	0		460.9	2.69E+00	7.196-04
9/16/98	Lionin Sulfonate	154	10	13.1	0	0.044	460.9	1.47E+00	3.92E-04
9/22/88	Lionin Sulfonate	169	5	11.1	0		461.6	1.22E+00	3.27E-04
9/25/98	Lionin Sulfonate	68	10	11.1	0	0.057	461.6	2.26E+00	6.05E-04
10/5/98	Lionin Sulfonate	179	2	17.7	0	0.054	439.1	1.99E+00	5.31E-04
10/5/98	Lionin Sulfonate	179	10	17.71	0	,	439.1	1.83E+01	4.89E-03
10/21/98	Lianin Sulfonate	192	2	32.2	0	0.069	447.0	2.91E+00	7.78E-04
10/21/98	Lignin Suffonate	192	10	32.2	0	0.079	447.0	3.50E+00	9.37E-04
11/4/98	Lignin Sulfonate	1013	2	24.1	0		454.0	0.00E+00	0.00E+00
11/4/98	Lianin Sulfonate	1013	10	24.1	0	0.023	454.0	1.81E-01	4.83E-05
11/6/98	Lignin Sulfonate	1020	5	20.2	0	0.035	446.8	8.90E-01	2.38E-04
11/6/98	Lignin Suffonate	1020	10	20.2	0		446.8	2.31E+00	6.19E-04
11/6/98	Lignin Sulfonate	1021	2	24.9	0		445.3	5.32E-01	1.42E-04
11/6/98	Lignin Sulfonate	1021	10	24.9			445.3	2.96E-01	7.91E-05
12/30/98	Lionin Sulfonate	1035	5	21.8	0		433.9	8.03E+00	2.15E-03
12/30/98	Lionin Sulfonate	1035	10	21.8	0		433.9	7.68E+00	2.05E-03
12/30/98	Lianin Sulfonate*	1036	5	18.9	0		427.9	1.93E+01	5.17E-03
12/30/98	Lionin Sulfonate*	1036	10	18.9	0		427.9	6.06E+02	1.62E-01
12/30/98	Lignin Suffonate*	1037	2	10.4	o	0	431.4	8.85E+00	2.37E-03
12/30/98	Lignin Sulfonate*	1037	10	10.4	0	1.473	431.4	8.35E+01	2.23E-02
12/30/98	Lignin Sulfonate*	1038	2	18.3	0	0.408	432.9	2.24E+01	5.98E-03
12/30/98	Lionin Sulfonate*	1038	10	18.3	0	0.269	432.9	1.44E+01	3.84E-03

		1	Contraction of Direction (min)	(quu) (11)	Tom ( In (v=1 n=0)	Ava. Conc. (ma/m^3)	Qactual (ft~3/min)	Flux (mg/m^2*min)	Flux (ton/(acre*hr)
naine 1	Suppose in the		OT TIME A	2			470.0	2.43E+01	6.50E-03
8/13/98	Penn Suppress	S	2	0.17				A DEFLON	1 335 03
B/71/98	Penn Suppress	116	10	22.0		0.099	4/4.0	4.4051400	50-155-1 1
80/90B	Dann Sunnress	133	10	24.3	0	0.157	461.4	8.38E+00	2.24E-03
001100	Denn Sunnree	141	10	38.9		0.022	457.4	1.21E-01	3.24E-05
00/14/0	Donn Suppress	1.0		29.6	0	0.023	474.2	1.88E-01	5.03E-05
00/14/00	Conn Suppress		101	29.6		0.012	474.2	-5.02E-01	-1.34E-04
9/14/90	Penn Suppress	81	2	203		0.035	465.4	9.24E-01	2.47E-04
9/22/90		187	101	20.3		0.034	465.4	8.63E-01	2.31E-04
8123/80	Peril Suppres	175	<b>4</b>	18.7		0.057	459.3	2.25E+00	6.02E-04
86/97/6		371		18.7	,	0.084	459.3	3.90E+00	1.04E-03
06/07/6				7 60		0.083	463.9	3.87E+00	1.04E-03
10/0/00	Perin Suppress	1001	2	23.4		0.093	463.9	4.48E+00	1.20E-03
		201	2	101		0.035	456.3	9.08E-01	2.43E-04
06/17/01	Perin Suppress	101		191		0.145	456.3	7.56E+00	2.02E-03
00/2017		5 9	2	19.0		0.023	445.9	1.78E-01	4.75E-05
00/00/01		100	10,	19.0		0.028	445.9	4.74E-01	1.27E-04
10/20/30	Denn Sunntee	1011		33.3		0.030	441.1	5.87E-01	1.57E-04
11/1/00	Donn Suppress	1914	101	33.3		0.022	441.1	1.17E-01	3.14E-05
1/4/30	Lelin ouppress	-							

Penn Suppress Phase I fluxes - not spike corrected

C.	Summerant		Distration (mln)  U10	(qqm)	Torn Up (v=1.n=0)	Ava. Conc. (ma/m^3)	Qactual (fr/3/min)	Flux (mg/m^2*min)	Flux (ton/(acre*hr)
	Acres Dolymor		101		0	0.176	473.8	9.77E+00	2.61E-03
001100	Acrylic Folymer	5		25.3	0	060.0	459.5	4.26E+00	1.14E-03
06/17/0	Activity Polymer	121	101	36.0	0	0.062	469.0	2.61E+00	6.97E-04
0/20/30	Acrylic Folymer	142		23.0		0.034	475.4	8.80E-01	2.35E-04
0/11/08	Acrylic Polymer	140		22.3	0	0.014	466.2	-3.70E-01	-9.90E-05
0/14/0B	Acrific Polymer	159	101	22.3	0	0.022	466.2	1.23E-01	3.30E-05
90/2/98	Acrylic Polymer	166	5	24.4	0	0.048	464.7	1.72E+00	4.61E-04
9/23/98	Acrylic Polymer	166	10	24.4	0	0.051	464.7	1.91E+00	5.10E-04
0/08/08	Acrilic Polymer	174	9	35.3	0	0.063	451.7	2.58E+00	6.89E-04
00/08/08	+	174	101	35.3	0	0.060	451.7	2.40E+00	6.41E-04
10/0/08	-	188	2	28.4	0	0.069	463.2	3.01E+00	8.04E-04
10/0/08		188	101	28.4	0	0.055	463.2	2.15E+00	5,74E-04
10.01.08		195	9	14.4	0	0.031	455.6	6.65E-01	1.78E-04
1001/08		195	101	14.4	0	0.037	455.6	1.03E+00	2.75E-04
10/26/98		1000	2	18.7	0	0.026	445.3	3.55E-01	9.49E-05
10/26/98	1	1000	10	18.7	0	0.032	445.3	7.10E-01	1.90E-04
11/4/9R	1	1010	5	19.8	0	0.092	444.2	4.25E+00	1.14E-03
11/4/98	1-	1010	10	19.8	0	0.104	444.2	4.96E+00	1.33E-03
	4								

Rohm Haas Acrylic Polymer - Phase I fluxes - not spike corrected

				Tren IIn /v=1 n=0) Avn Conc (ma/m^3) Qectual (ft^3/min)	Cactual (ft ^{A3} /min)	Flux (mg/m [^] 2 ^m m)	FIUX (TORV BCLE-TIT)
Dete SI	Suppresent	Run #	500		461 6		8.18E-04
8/21/98	Hvdroseed	119	10 23.5			E 01E 01	1 30E-04
	I. decoond	VCF	10 38.7	0	494.0	10-317.0	
4	Live au		10 10	0	478.0	6.32E-01	1.69E-04
_	Hydroseed	2			467.0	-3.71E-01	-9.92E-05
	Hydroseed	143			454.0	3.91E+00	1.05E-03
9/14/98	Hydroseed	15/	0.04		454.0	1.20E+00	3.22E-04
9/14/98	Hydroseed	157	10 7 10		450.2	5.50E+00	1.47E-03
9/23/98 H	Hydroseed	164	c.17 c		450.3	4 30F+00	1.15E-03
9/23/98	Hydroseed	164	10 21.5		1.004	2 DELADO	7 R4F-04
<b> </b>	Hudroseed	172	5 34.2	0	44/ A	2,000	
1			10 34 2	0 0.055	447.9	2.08E+00	0.0/E-04
-+	Hydroseed	7.1			455.5	4.41E+00	1.18E-03
10/9/98	Hydroseed	92			455.5	6.83E+00	1.83E-03
10/9/98	Hydroseed	186			472.4	4 37E+00	1.17E-03
10/21/98	Hydroseed	197	5 30.4		472.4	3 69E+00	9.86E-04
10/21/98	Hydroseed	197	10 30.4		454.4	3.62E-01	9.67E-05
10/26/98	Hydroseed	1002			AEA A	4 R2F-01	1 29E-04
10/26/98	Hydroseed	1002	10 35.9	0	425.5	2 15E+00	5 74E-04
11/4/98	Hydroseed	1008	5 25.6		100.0	2 100100	0 30F_04
	Hvdroseed	1008	10 25.6	6 0.080	430.0	0.400.400	0.001

Hydroseed - Phase I fluxes - not spike corrected

1					;		:	;	:	,							1	٦
Flux (ton/(acre*hr)	-3.32E-04	2.69E-04	5.68E-04	3.92E-04	1.50E-04	1.50E-04	6.90E-04	1.01E-03	1.50E-04	2.66E-04	1.63E-03	1.57E-03	-1.44E-04	-1.28E-04	-6.41E-05	-6.41E-05	3.21E-05	3 37E-04
Flux (mg/m^2*min)	-1.24E+00	1.01E+00	2.13E+00	1.46E+00	5.61E-01	5.61E-01	2.58E+00	3.78E+00	5.60E-01	9.96E-01	6.11E+00	5.87E+00	-5.38E-01	4 79E-01	-2.40E-01	-2.40E-01	1.20E-01	1.26E+00
Qactual (f*3/min)	468.7	475.4	472.7	460.4	471.6	471.6	476.1	476.1	470.8	470.8	446.4	446.4	450.7	450.7	451.6	451.6	452.7	452.7
rg. Conc. (mg/m^3)		0.036	0.054	0.044	0.029	0.029	0.061	0.080	0.029	0.036	0.123	0.119	0.011	0.012	0.016	0.016	0.022	0.041
Torn Up (v=1,n=0) [ Avg. Conc. (mg/m/3) [ Qactual (ft^3/min) ] Flux (mg/m^2*min)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U10 (mph)		25.4	22.2	42.1	29.0	29.0	30.8	30.8	41.7	41.7	19.2	19.2	49.6	49.6	36.7	36.7	33.9	33.9
Duration (min)	10	10	10	10	5	10	5	10	2	10	5	10	5	10	5	10	5	10
Run #		121	126	138	152	152	163	163	178	178	185	185	1003	1003	1024	1024	1025	1025
Suppressent	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP	RAP
Date	8/5/98	8/17/98	8/24/98	8/27/98	9/11/98	9/11/98	9/21/98	9/21/98	9/30/98	9/30/98	10/9/98	10/9/98	10/26/98	10/26/98	11/6/98	11/6/98	11/6/98	11/6/98

Rap - Phase I fluxes - not spike corrected

corrected
not spike
fluxes
Phase Phase
- 1
Crusted
Control

Flux (mg/m^2*min) Flux (ton/(acre*hr)		1.86E+00 4.97E-04	3.11E+00 8.31E-04	1.73E+00 4.63E-04		1.85E+00 4.94E-04	1.28E+00 3.42E-04	2.07E+00 5.54E-04	6.51E+00 1.74E-03	8.56E+00 2.29E-03	1.48E+00 3.95E-04	2.89E+00 7.73E-04	2.19E+00 5.84E-04	1 65E+00 4 42E-04	1.04E+01 2.79E-03		VOIDED	
	476.7	468.5	449.9	449.9	464.7	464.7	460.1	460.1	441.0	441.0	444.1	444.1	444.5	444.5	433.4	433.4		
Tom Up (v=1,n=0)   Avg. Conc. (mg/m ^A 3)   Qactual (fr3/min)		0.050	0.072	0.049	0.036	0:050	0.041	0.054	0.131	0.166	0.045	0.069	0.057	0.048	0.201	0.190	VOIDED	
Tom Up (y=1,n=0)	0	0	0	0	0	0	0	o	o	0	0	0	0	0	0	0	0	,
(Ham) 0	47.1	28.5	27.5	27.5	16.5	16.5	15.7	15.7	15.7	15.7	36.9	36.9	27.9	27.9	20.1	20.1		
Duration (min) U10	4	10	5	10	5	10	9	10	9	10	9	10	5	10	9	10	5	
Run #	100	111	151	151	161	161	177	11	183	183	198	198	1005	1005	1026	1026	1440	
Subpressent	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Crusted	Control Chietad	
Date	8/5/98	R/19/98	9/11/98	9/11/98	9/1/98	9/21/98	9/30/98	9/30/98	10/9/98	10/9/98	10/23/98	10/23/98	10/28/98	10/28/98	11/9/98	11/9/98	0/1/0	

c	
ñ	ļ
u	j
q	1
1	2
- 6	
۲	

### Control Uncrusted - Phase i fluxes - not spike corrected

Dete	Suppresent	Run #	Duration (min)	U10 (mph)		Torn Up (y=1,n=0) Avg. Conc. (mg/m^3) Qactual (ft^3/min)	Qactual (ft^3/min)	Flux (mg/m^2*min)	Flux (ton/(acre*hr)
8/24/98	Control Uncrusted	120	10	31.7		0 0.845	482.8	5.26E+01	1.41E-02
8/27/98	Control Uncrusted	135	10	34.3	)	0 0.307	470.8	1.79E+01	4.78E-03
9/11/98	Control Uncrusted	150	9	30.0		0.050	466.4	1.85E+00	4.95E-04
9/11/98	Control Uncrusted	150	10	30.0		0 0.049	466.4	1.79E+00	4.79E-04
9/21/98	Control Uncrusted	162	5	19.3	)	0.054	470.2	2.11E+00	5.66E-04
9/21/98	Control Uncrusted	162	10	19.3	)	3.913	470.2	2.42E+02	6.48E-02
9/30/98	Control Uncrusted	176	5	18,6		0.070	463.9	3.07E+00	8.21E-04
9/30/98	Control Uncrusted	176	10	18.6	-	0 0.169	463.9	9.15E+00	2.45E-03
10/9/98	Control Uncrusted	184	5	14.3		0.112	436.4	5.34E+00	1.43E-03
10/9/98	Control Uncrusted	184	10	14.3	)	0 2.362	436.4	1.36E+02	3.64E-02
10/26/98	Control Uncrusted	1004	5	27.7		0.136	451.7	6.95E+00	1.86E-03
10/26/98	Control Uncrusted	1004	10	27.7	)	0 0.151	451.7	7.85E+00	2.10E-03
10/28/98	Control Uncrusted	1006	5	32.0		0.056	443.0	2.12E+00	5.67E-04
10/28/98	Control Uncrusted	1006	10	32.0		0.061	443.0	2.41E+00	6.46E-04
11/9/98	Control Uncrusted	1027	2	14.7	<b>J</b>	0.180	432.5	9.22E+00	2.46E-03
11/9/98	Control Uncrusted	1027	10	14.7		2.788	432.5	1.59E+02	4.26E-02
9/4/98	Control Uncrusted	142A	5	24.9		VOIDED		VOIDED	
9/4/98	Control Uncrusted	142A	10	38.0	5	o voided		VOIDED	

Date	Succreasent	Run #	Run # Duration (min)	1) U10 (mph)	Torn Up (v=1,n=0)	Avg. Conc. (mg/m^3)   Qactual (ft^3/min)	Qactual (ft ⁴ 3/min)	Flux (mg/m^2*min)	Fiux (ton/(acre*hr)
8/13/98	Plastex	103	1		0	1.607	478.1	1.00E+02	2.68E-02
8/21/98	Plastex	118	<b>,</b>	0 25.0	0	0.195	462.7	1.07E+01	2.87E-03
8/26/98	Plastex	133	-	0 35.1	0	0.047	476.1	1.70E+00	4.54E-04
9/2/98	Plastex	144	ſ	10 32.6	0	0.022	476.9	1.26E-01	3.37E-05
9/14/98	Plastex	158		5 32.6	0	0.051	460.1	1.89E+00	5.05E-04
9/14/98	Plastex	158		0 32.6	0	0.047	460.1	1.65E+00	4.40E-04
9/23/98	Plastex	165		5 26.1	0	0.106	461.6	5.26E+00	1.41E-03
9/23/98	Plastex	165	1	0 26.1	0	0.084	461.6	3.91E+00	1.05E-03
9/28/98	Plastex	173		5 35.6	0	0.066	447.9	2.74E+00	7.32E-04
9/28/98	Plastex	173	Ţ	0 35.6	0	0.064	447.9	2.62E+00	7.00E-04
10/9/98	Plastex	187		5 27.9	0	0.119	441.1	5.81E+00	1.55E-03
10/9/98	Plastex	187	-	0 27.9	0	0.065	441.1	2.64E+00	7.06E-04
10/21/98	Plastex	196		5 32.1	0	0.193	461.0	1.06E+01	2.83E-03
10/21/98	Plastex	196	1	0 32.1	0	0.144	461.0	7,57E+00	2.03E-03
10/26/98	Plastex	1001		5 36.3	0	0.069	444.8	2.90E+00	7.75E-04
10/26/98	Plastex	1001		0 36.3	0	0.022	444.8	1.18E-01	3.16E-05
11/4/98	Plastex	1009		5 34.9	0	0.083	443.4	3.71E+00	9.93E-04
11/4/98	Plastex	1009	1	0 34.9	0	0.086	443.4	3.89E+00	1.04E-03

Plastex - Phase I fluxes - not spike corrected

Sol

Table E.22

Soil Sement(c) - Phase I fluxes - not spike corrected

+ +	and the second se					(c. mygm) and my have	(Intro II) Intro I		
÷	Soil Cement	104	10	18.6	0	0.089	477.7	4.35E+00	1.16E-03
8/20/98 Soil	Soil Cement	113	10	29.2	0	0.028	476.1	5.03E-01	1.35E-04
8/25/98 Soil	Soil Cement	127	10	30.3	0	0.135	476.7	7.24E+00	1_94E-03
8/28/98 Soil	Soil Cement	140	10	26.4	0	0.081	481.5	3.88E+00	1 04E-03
	Soil Cement	153	5	27.5	0	0.067	454.0	2.83E+00	7 57E-04
+	Soil Cement	153	10	27.5	0	0.078	454.0	3.49E+00	9.34E-04
-	Soil Cement	168	2	30.9	0	0.044	449.4	1.43E+00	3.83E-04
+	Soil Cement	168	10	30.9	0	0.072	449.4	3.10E+00	8.30E-04
+	Soil Cement	180	5	19.7	0	0.033	444.1	7.67E-01	2.05E-04
10/5/98 Soil	Soil Cement	180	10	19.7	0	0.062	444.1	2.48E+00	6.63E-04
10/21/98 Soil	Soil Cement	193	5	15.2	0	0.509	450.1	2.92E+01	7.81E-03
<u> </u>	Soil Cement	193	10	15.2	0	0.033	450.1	7.77E-01	2.08E-04
11/4/98 Soil	Soil Cement	1012	5	30.7	0	0.034	453.2	8.42E-01	2.25E-04
11/4/98 Soil	Soil Cement	1012	10	30.7	0	0.015	453.2	-3.01E-01	-8.04E-05
11/6/98 Soil	Soil Cement	1022	5	23.8	0	0.022	446.5	1.19E-01	3.17E-05
11/6/98 Soil	Soil Cement	1022	10	23.8	0	0.022	446.5	1.19E-01	3.17E-05
11/6/98 Soil	Soil Cement	1023	5	22.5	0	0.037	450.8	1.02E+00	2.72E-04
11/6/98 Soil	Soil Cement	1023	10	22.5	0	0.032	450.8	7.18E-01	1.92E-04

Phase II - computation of 15-19.9 mph weighted flux - averaged over all suppressants

ted Flux		-3.380		-3./42		-3.1/4		-3.583		-3.022		-2.939		-3.506		-3.748		-3.686		-3.150		-3.214	-3 377		107.0	2 14F-04	4 20E-04	8.26E-04
og of Weigh					į																							
) Torn Up (y=1,n=0) U10 (mph) Flux (ton/(acre*hr)  Flux Weighted Avg     Log of Weighted Flux		4.17E-04		1.81E-04		6.69E-04		2.61E-04		9.51E-04		1.15E-03		3.12E-04		1.79E-04		2.06E-04		7.08E-04		6.11E-04	e of jou =	- i '		ao maan - 1 ctd dav	-	geo mean + 1 std dev
ix (ton/(acre*hr) Fi	2.76E-04	4.88E-04	-3.20E-05	2.88E-04	6.15E-04	6.96E-04	1.76E-04	3.04E-04	1.50E-03	6.75E-04	1.22E-03	1.12E-03	1.29E-04	4.03E-04	2.43E-04	1.46E-04	1.30E-04	2.44E-04	1.78E-04	9.73E-04	6.21E-04	6.05E-04			S			
U10 (mph) [Flu	19.6	19.6	17.0	17.0	16.4	16.4	19.9	19.9	18.7	18.7	15.1	15.1	16.3	16.3	16.1	16.1	16.8	16.8	17.9	17.9	19.8	19.8						
forn Up (y=1,n=0) [1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
Duration (min)	5	10	2	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10	5	10						
Run # 1	1109	1109	1081	1081	1084	1084	1085	1085	1050	1051	1052	1053	1091	1091	1092	1092	1094	1094	1095	1095	1059	1060		-				
Suppressant	Double Water	Double Water	Acrylic Polymer	Lig Sulfonate	Lig Sulfonate	Lig Sulfonate	Lig Sulfonate	Penn Suppress	Plastex	Plastex																		

Phase II - computation of 20-24.9 mph weighted flux - averaged over all suppressants

Suppressant	Run #	Run #  Duration (min)	Tom Up (y=1, t	010 (0=0	(udu)	) Tom Up (y=1,n=0) U10 (mph) Flux (ton/(acre*hr)	Flux Weighted Avg and Log of Weighted flux	-og of Weighted flux
	1106	5		0	22.4	3.95E-04		
Double Water	1106	10		0	22.4	1.65E-04	2.41E-04	-3.617
Double Water	1107	5		0	22.0	1.96E-04		
Double Water	1107	10		0	22.0	1.47E-04	1.64E-04	-3.786
Acrylic Polymer	1082	5		0	21.9	6.41E-05		
Acrylic Polymer	1082	10		0	21.9	4.33E-04	3.10E-04	-3.509
Acrylic Polymer	1086	5		0	22.8	2.72E-04		
Acrylic Polymer	1086	10		0	22.8	1.92E-04	2.19E-04	-3.660
Lig Sulfonate	1066	5		0	21.2	5.10E-04		
Lig Sulfonate	1066	10		0	21.2	1.74E-03	1.33E-03	-2.877
Lig Sulfonate	1067	5		0	23.1	6.25E-04		
ig Sulfonate	1068	10		0	23.1	2.88E-04	4.01E-04	-3.397
Lig Sulfonate	1137	S		0	21.3	-1.66E-04		
Lig Sulfonate	1137	10		0	21.3	4.97E-05	-2.21E-05	
-ig Sulfonate	1139	5		0	21.0	6.41E-04		
Lig Sulfonate	1139	10		0	21.0	7.85E-04	7.37E-04	-3.132
MaCI	1096	5		0	24.9	-6.50E-05		
MaCI	1096	10		0	24.9	-1.30E-04	-1.08E-04	
MgCI	1097	5		0	23.3	7.37E-04		
MaCI	1097	10		0	23.3	9.83E-05	3.11E-04	-3.507
MaCi	1098	5		0	21.4	1.64E-05		
MgCI	1098	10		0	21.4	3.27E-05	2.73E-05	-4.564
MaCI	1099	5		0	22.6	1.80E-04	, 80 97 97 97 97 97 97 97 97 97 97 97 97 97	
MgCI	1099	10		0	22.6	4.92E-04	3.88E-04	-3.411
Maci	1146	5		0	20.3	9.37E-04		
MgCI	1146	10		0	20.3	2.50E-03	1.98E-03	-2.703
Penn Suppress	1093	5		0	24.1	1.63E-04		
Penn Suppress	1093	10		0	24.1	2.12E-04	1.96E-04	-3.709
Plastex	1056	S		0	23.5	6.60E-04		
Plastex	1056	10		0	23.5	5.50E-04	5.87E-04	-3.232
Plastex	1057	5		0	24.7	5.51E-04		
Plastex	1058			0	24.7	5.82E-04	5.72E-04	-3.243
Plastex	1061	5		0	24.0	7.78E-04		
Plastex	1062	10		0	24.0	8.10E-04	1 7.99E-04	-3.097
Soil Sement	1104			0	24.7	6.53E-05		
Soil Sement	1104	T		0	24.7	1.14E-04	4 9.80E-05	-4.009

Phase II - computation of 20-24.9 mph weighted flux - averaged over all suppressants

if Weighted flux	, and the second s	-3.466	0.448	1.22E-04	3.42E-04	9.60E-04
hin) Trom Up (v=1 n=0) [U10 (mph)] Flux (ton/(acre*hr)   Flux Weighted Avg   Log of Weighted flux		average of log =	std dev of log =	geo mean - 1 std dev	geo mean	geo mean + 1 std dev
Flux (ton/(acre*hr) F				<u> </u>		
n=0) U10 (moh)						
) Torn Up (v=1						
Diration (n					-	
Inbraccant Run #						

Phase II - computation of 25-29.9 mph weighted flux - averaged over all suppressants

Run#I	Suppressant Run # [Duration (min) Tom Up (y=1;n=0) [U10 (mph)] Flux (ton/(acre-hr)	1.0=0,1U		X (ton/(acre-nr)		or weighted riux
1105	S	0	25.2	3.73E-04		
1105	10	0	25.2	1.30E-04	2.11E-04	-3.676
1108	2	0	25.4	3.10E-04		
1108	10	0	25.4	1.14E-04	1.79E-04	-3.747
1049	5	0	25.5	5.30E-04		
1049	10	0	25.5	4.39E-04	4.70E-04	-3.328
1136	2	0	27.1	8.96E-04		
1136	10	0	27.1	-3.32E-05	2.77E-04	-3.558
1138	5	0	27.5	7.66E-04		
1138	10	0	27.5	8.46E-04	8.19E-04	-3.087
1140	S	0	29.5	5.20E-04		
1140	10	0	29.5	4.06E-04	4.44E-04	-3.352
1063	S	0	25.7	3.86E-04		
1063	10	0	25.7	3.05E-04	3.32E-04	-3.479
1101	5	0	25.2	00+300.0		
1101	10	0	25.2	1.64E-05	1.09E-05	-4.962
1102	5	0	29.1	1.64E-05		
1102	10	0	29.1	-1.64E-05	-5.45E-06	
1103	5	0	27.4	8.17E-05		
1103	10	0	27.4	4.90E-05	5.99E-05	-4.223
					average of log =	-3.712
					std dev of log =	0.567
					geo mean - 1 std dev	5.26E-05
					geo mean	1.94E-04
t					deo mean + 1 std dev	7.15E-04

 
 Suppressant
 Rún #
 Duration (min)
 Tom Up (y=1, n=0)
 U/10 (mph)
 Flux (ton/(acre*h)
 Flux Weighted Avg
 tog of Weighted Flux

 Soil Sement
 1100
 5
 0
 30.2
 -2.12E-04
 -1.47E-04
 #NUM!

 Soil Sement
 1100
 10
 0
 30.2
 -1.14E-04
 -1.47E-04
 #NUM!
 Table E.26

Phase II - computation of 30-34.9 mph weighted flux - averaged over all suppressants

Phase I - computation of 5-9.9 mph weighted flux - averaged over all suppressants

og of Weighted flux		-2.950	-2.950	i0//10#		1.12E-03	
kun #   Duration (min)   U10 (mph)   Flux (ton/(acre1h)   Flux Weighted Avg /   Log of Weighted flux		1.12E-03	average of logs =	std dev of logs =	geo mean - 1 std dev	geo mean =	geo mean + 1 std dev
Flux (ton/(acre [*] hr)	4.13E-04	1.48E-03					
(110 (mph)	8.2	8.2					
Duration (min)	5	10					
Run #	182	182					
Subbressant	MaCl	MaCi					

Phase I - computation of 10-14.9 mph weighted flux - averaged over all suppressants

feighted Flux		-2.876		-3.616	-2.699		-3.300		-3.290		-1.805		-2.931	0.642	2.67E-04	1.17E-03	5.14E-03		-3.156	0.367	3.00E-04	6.98E-04	1.62E-03
Flux Weighted Avg		1.33E-03		2.42E-04	2.00E-03		5.01E-04		5.12E-04		1.57E-02	Including baseline	average of logs =	std dev of logs =	geo mean - 1 std dev	geo mean =	geo mean + 1 std dev	Excluding baseline	average of logs =	std dev of logs =	geo mean - 1 std dev	geo mean =	geo mean + 1 std dev
Uf0 (mph) Flux (ton/(acre*hr) Flux	5.39E-04	1.73E-03	1.78E-04	2.75E-04	2.00E-03	7.19E-04	3.92E-04	3.27E-04	6.05E-04	2.37E-03	2.23E-02			std	0e0	deo	0e0	Exc	ave	std	0e0	Geo	dec
U10 (mph) FI	13.1	13.1	14.4	14.4	14.6	13.1	13.1	11.1	11.1	10.4	10.4	k surface tom											
n# Duration (min)	5	10	5	10	10	5	10	5	10	5	10	opressant removed & surface tom up				-	2						
Run#	181	181	195	195	115	154	154	169	169	1037	1037	suppres											
Suppressant		Double Water	Acrylic Polymer	Acrylic Polymer	Lionin Sulfonate	Lignin Sulfonate*	Lignin Sulfonate*	*Baseline Data:															

Phase I - computation of 15-19.9 mph weighted flux - averaged over all suppressants

Double Water Double Water Acrylic Polymer Acrylic Polymer Acrylic Polymer Lionin Sulfonate			l(nqm) uru	n # Duration (min)   U10 (mph) Flux (ton/(acre-hr) Flux Weigned Avg		
Double Water Acrylic Polymer Acrylic Polymer Acrylic Polymer Acrylic Polymer Lionin Sulfonate	1014	5	19.6	9.85E-05		
Acrylic Polymer Acrylic Polymer Acrylic Polymer Acrylic Polymer Lionin Sulfonate	1014	10	19.6	0.00E+00	3.28E-05	-4.484
Acrylic Polymer Acrylic Polymer Acrylic Polymer Lionin Sulfonate	1000	2	18.7	9.49E-05		
Acrylic Polymer Acrylic Polymer Lignin Sulfonate	1000	10	18.7	1.90E-04	1.58E-04	-3.801
Acrylic Polymer Lionin Sulfonate	1010	5	19.8	1.14E-03		
Lignin Sulfonate	1010	10	19.8	1.33E-03	1.26E-03	-2.899
	139	10	15.4	2.09E-03	2.09E-03	-2.680
It ionin Sulfonate	179	2	17.7	5.31E-04		
l ionin Sulfonate	179	10	17.7	4.89E-03	3.44E-03	-2.464
Linnin Sulfonate*	1036	2	18.9	5.17E-03		
Lionin Sulfonate*		10	18.9	1.62E-01	1.10E-01	-0.959
Linnin Sulfonate		Ω.	18.3	5.98E-03		
Lignin Sulfonate*		10	18.3	3.84E-03	<b>4</b> .55E-03	-2.342
MaCI	-	10	19.6		1.19E-03	CZ6.2-
MaCI	190	5	17.7	6.56E-04		
MaCI	190	10	17.7	7.34E-04	7.08E-04	-3.150
MaCI	1016	5	19.3	7.		
MaCI	1016	10	19.3		9.78E-05	-4.010
Penn Suppress	175	5	18.7	6.02E-04		
Penn Suppress	175	10	18.7	1.04E-03	8.95E-04	-3.048
Penn Suppress	194	5	19.1	2.43E-04		
Penn Suppress	194	10	19.1		1.43E-03	-2.845
Penn Suppress	199	5	19.0	4.75E-05		
Penn Suppress	199	10	19.0	-	1.00E-04	-3.999
Soil Sement	104	10	18.6		1.16E-03	-2.934
Soil Sement	180	5	19.7			
Soil Sement	180	10	19.7	6.63E-04	5.10E-04	-3.282
Soil Sement	193	5	15.2			
Soil Sement	193	10	15.2	2.08E-04	2.74E-03	796.7-
*Baseline Data:	suppre	uppressant removed 8	& surface tom up	dn wo	Including baseline	
	•				average of logs =	-3.024
					std dev of logs =	0.824
5						

# Phase I - computation of 15-19.9 mph weighted flux - averaged over all suppressants

2.48E-03	geo mean + 1 std dev		
6.01E-04	geo mean =		
1.46E-U4	geo mean - 1 std dev		
0.615	std dev of logs =		
-3.221	average of logs =		
	Excluding baseline		
6.30E-03	geo mean + 1 std dev		
9.45E-04	geo mean =		
1.42E-04	geo mean - 1 std dev		

Phase I - computation of 20-24.9 mph weighted flux - averaged over all suppressants

Suppressant    Run #   Duration (min)	Run#		U10 (mph)	U10 (mph) Flux (ton/(acrethr)) weighted avg	weighted avg with the log of wt avg	g of wt avg
Double Water	129	10	23.6			
Double Water	170	5	21.0		1.41E-03	-2.851
Double Water	170	~	21.0	3.59E-04	3.59E-04	-3.445
Acrylic Polymer	142	10	23.0	2.35E-04	2.35E-04	-3.629
Acrylic Polymer	159	5	22.3	-9.90E-05		
Acrylic Polymer	159	10	22.3	3.30E-05	-1.10E-05	
Acrylic Polymer	166	5	24.4	4.61E-04		
Acrylic Polymer	166	10	24.4	5.10E-04	4.94E-04	-3.307
Lignin Sulfonate	1013	2	24.1	0.00E+00		
Lignin Sulfonate	1013	10	24.1	4.83E-05	3.22E-05	-4.492
Lignin Sulfonate	1020	5	20.2			
Lionin Sulfonate	1020			6.19E-04	4.92E-04	-3.308
Lionin Sulfonate*		5	21.8	2.15E-03		
Lignin Sulfonate*	-	10		2.05E-03	2.09E-03	-2.681
MaCl	171	5	22.4	2.12E-04		
MaCI	171	10	22.4	3.74E-04	3.20E-04	-3.495
MaCl	1015		21.7	9.69E-05		
MaCI	1015	10	21.7	9.69E-05	9.69E-05	-4.014
MaCI	1017	5	23.3	4.63E-05		
MaCI	1017	-		1.70E-04	1.29E-04	-3.891
Penn Suppress	105	10		6.50E-03	6.50E-03	-2.187
Penn Suppress	116	3 10	22.0	1.33E-03	1.33E-03	-2.877
Penn Suppress	132	10		2.24E-03	2.24E-03	-2.650
Penn Suppress	189	9	23.4	1.04E-03		
Penn Suppress	189	T	23.4	1.20E-03	1.14E-03	-2.941
Plastex	103	3 10	23.7	7 2.68E-02	2.68E-02	-1.572
Soil Cement	1022	2	23.8	3 3.17E-05		
Soil Cement	1022	2 10	23.8		3.17E-05	-4.499
Soil Cement	1023	5	22.5	2		
Soil Cement	1023	3 10	22.	5 1.92E-04	2.19E-04	-3.660
		-			Including healing	
"Baseline Data:	suppr	suppressant removed	& SUITACE TOTIL UP	dn Llo		2000
					average of logs =	C07.6-
					std dev of logs =	0.772

## Phase 1 - computation of 20-24.9 mph weighted flux - averaged over all suppressants

9.20E-05	5.44E-04	3.22E-03		-3.301	0.782	8.26E-05	5.00E-04	3.03E-03
geo mean - 1 std dev	geo mean =	geo mean + 1 std dev	Excluding baseline	average of logs =	std dev of logs =	geo mean - 1 std dev	geo mean =	geo mean + 1 std dev
					-			
								State and state
 		-					-	

Phase I - computation of 25-29.9 mph weighted flux - averaged over all suppressants

Suppressant							
.	108		₽	25.6	5.31E-03	5.31E-03	-2.275
Double Water	114		9	25.1		4.11E-04	-3.386
Double Water	191		5	25.9	1.32E-03		
Double Water	191		9	25.9	1.24E-03	1.26E-03	-2.898
Double Water	1018		S	26.5	-6.24E-05		
Double Water	1018		9	26.5	9.36E-05	4.16E-05	-4.381
Double Water	1019		5	28.8	4.48E-04		
Double Water	1019		10	28.8		3.73E-04	-3.428
Acrylic Polymer	117		9	25.3		1.14E-03	-2.943
Acrylic Polymer	188		S	28.4			
Acrylic Polymer	188		5	28.4	5.74E-04	6.51E-04	-3.187
	130		10	26.0	2.15E-03	2.15E-03	-2.668
	156		S	29.3	1.66E-04		
	156		10	29.3		1.55E-04	-3.811
Penn Suppress	160		S	29.6	5.03E-05		
Penn Suppress	160		<u>9</u>	29.6	5 -1.34E-04	-7.26E-05	
Penn Suppress	167		S	29.3			
Penn Suppress	167		9	29.5		2.36E-04	-3.627
	118		9	25.0		2.87E-03	-2.542
	165		S	26.			
	165		9	26.1		1.17E-03	-2.933
	187		S	27.9	9 1.55E-03		
	187		9	27.9	9 7.06E-04	9.88E-04	-3.005
Soil Sement	113		9	29.2	2 1.35E-04	1.35E-04	-3.871
Soil Sement	140		9	26.4	4 1.04E-03	1.04E-03	-2.984
Soil Sement	153		S	27.5	5 7.57E-04		
Soil Sement	153		9	27.	.5 9.34E-04	8.75E-04	-3.058
						averane of lons =	-3.187
							0 541
						cRo-	
		-				geo mean - 1 std dev	1.87E-04
						geo mean =	6.50E-04

Phase I - computation of 30-34.9 mph weighted flux - averaged over all suppressants

<b>Internation</b>		-3.15/		-3.182	-4,489	-3.343		-3.148	5	-3.554	-3.479	0.519	 1.01E-04	3.32E-04	1.10E-03
	Suppressant 2: Run # Duration (min) U10 (mpn) hux (con/acterity) weavy outlook and the second	6.97E-04		6.57E-04	3.24E-05	4.54E-04		7.10E-04		2.79E-04	average of logs =	std dev of logs =	geo mean - 1 std dev	geo mean =	geo mean + 1 std dev
	HIUX (TOP/(BCIE/11)	6.97E-04	6.89E-04	6.41E-04	3.24E-05	4.54E-04	7.32E-04	7.00E-04	7.75E-04	3.16E-05					
the state of the s	U10 (mpn)	36.0	35.3	35.3	38.9	35.1	35.6	35.6	36.3	36.3					
	Duration (min)	10	5	10	10	10	5	10	2	10			t.		
	Run #	134	174	174	141	133	173	173	1001	1001					
00011	Suppressant	Acrylic Polymer	Acrylic Polymer	Acrylic Polymer	Penn Sunnress	Plastex	Plastex	Plastex	Plastex	Plastex					

Phase I - computation of 35-39.9 mph weighted flux - averaged over all suppressants

mmary of treated surface fluxes - not torn up and not corrected for spike
luxes - not torn up and
f treated surface fl
Table E.34 - Summary of

	LIUX AVOID	1775 - 1 28911 - 2761	Link Avgiages : Lisses : - Saurung Papalita : Mil	-	
Wind Speed	Geometric Mean	Geometric Mean	Geometric Mean	Number	App E
(mph)	- 1 Std. Dev		+ 1 Std. Dev	of	Table #
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	Runs	
5 - 9.9		1.12E-03		2	27
10 - 14.9	3.00E-04	6.98E-04	1.62E-03	6	28
15 - 19.9	1.46E-04	6.01E-04	2.48E-03	25	29
20 - 24.9	8.26E-05	5.00E-04	3.03E-03	28	30
25 - 29.9	1.87E-04	6.50E-04	2.26E-03	27	31
30 - 34.9	9.57E-05	4.83E-04	2.44E-03	21	32
35 - 39.9	1.01E-04	3.32E-04	1.10E-03	6	33
total runs				121	

		Flux Averages : Phase II	hase it		
Wind Speed	Geometric Mean	Geometric Mean	Geometric Mean	Number	App E
(hqm)	- 1 Std. Dev		+ 1 Std. Dev	of	Table #
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	Runs	
5 - 9.9	N/A	N/A	N/A	0	
10 - 14.9	N/A	N/A	N/A	0	
15 - 19.9	2.14E-04	4.20E-04	8.26E-04	22	23
20 - 24.9	1.22E-04	3.42E-04	9.60E-04	36	24
25 - 29.9	5.26E-05	1.94E-04	7.15E-04	20	25
30 - 34.9	N/A	N/A	N/A	0	26
35 - 39.9	N/A	N/A	N/A	0	
total runs				78	

			Coom mean flux Geom mean snike Geom mea	Geom mean soike	Geom mean spike	Geom mean spike	Number
Wind Speed	Geom mean riux	Geoill Islean nuv		4 CH Dav		+1 Std. Dev.	of runs
(ham)	-1 Std. Dev.		+1 3m. Uev.	-1 3m. USV.			
-	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	
10-14.9							
16 40 0	2 146-04	4 20F-04	8.26E-04	N/A	N/A	N/A	77
0.000		2 425-04	9 60F-04	N/A	N/A	N/A	36
20-24.9			7 155.04	N/A	N/A	N/A	20
25-29.9	0.7907.C	1.345-04	1 100 01	VIN	N/A	N/A	N/A
30-34.9	A/N	N/A	Y/N			NIA	A/M
35.35.9	N/A	N/A	N/A	N/A	A/N		
000000	NVA	N/A	N/A	N/A	N/A	N/A	A/N
B.44-04		NIA	N/A	N/A	N/A	N/A	N/A
40.44.4			NIA	N/A	N/A	N/A	N/A
50-54.9	A/N			NIA	N/A	N/A	A/A
55-59.9	N/A	N/A	<b>AN</b>		<b>V</b> 114	VIIV	N/A
60-64.9	N/A	N/A	N/A	N/A	A/N		
65-69.9	N/A	A/A	N/A	N/A	NA	A/N	

STABILIZED LAND EMISSION FACTORS - averaged over 7 tested suppressants NOT CORRECTED FOR EFFECTS OF SPIKE - NOT TORN UP Table E.35

			se Il Results - Not 7	se il Results - Not Torn Up Tests - Spike corrected	corrected		
Wind Speed	Geom mean flux	Geom mean flux	Geom mean flux	Geom mean spike	Geom mean spike	Geom mean spike	Number
(ham)	-1 Std. Dev.	1	+1 Std. Dev.	-1 Std. Dev.		+1 Std. Dev.	of runs
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	spike corrected
10-14.9							
15-19.9	1.00E-04	2.65E-04	7.04E-04	7.26E-07	5.03E-06	3.48E-05	18
20-24.9	5.24E-05	1 38E-04	3.65E-04	1.74E-06	4.59E-06	1.21E-05	32
25-29.9	1.92E-05	1.09E-04	6.19E-04	N/A	N/A	N/A	18
30-34.9	N/A	N/A	N/A	N/A	N/A	N/A	2
35.35.9	N/A	NA	N/A	N/A	N/A	N/A	N/A
40.44.9	N/A	A/A	N/A	N/A	N/A	N/A	N/A
45-49.9	A/A	N/A	N/A	N/A	N/A	N/A	A/A
50-54.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A
55-59.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A
60.64 9	N/A	N/A	N/A	N/A	N/A	N/A	N/A
65-69 9	N/A	N/A	N/A	N/A	N/A	N/A	N/A
total rune							70

STABILIZED LAND EMISSION FACTORS - averaged over 7 tested suppressants CORRECTED FOR EFFECTS OF SPIKE - NOT TORN UP Table E.36

Ī	63	÷.	Coom mean flix	Common flix Goom mean spike Geom m	Geom mean spike	Geom mean spike	Number
Wind Speed	Ō		11 CHI Dev	-1 Std. Dev.		+1 Std. Dev.	of runs
(hqm)	-1 Std. DeV.			(cardinal)	(ton/acra)	(ton/acre)	spike corrected
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/nr)	(minacie)			
						N/A	۰ د
10110	N/A	2 18E-03	N/A	N/A	<b>4</b> 22		• 6
15.10.0	1 69E-03	9.39E-03	5.22E-02	N/A	AN	N/A	27
	A 10E-04	2 17E-03	1.15E-02	N/A	AN	4/N	s (
C-47-07	7.101.0	8 14F_04	2 57E-03	N/A	٩Z	A/N	₽
R'67-67	Z.300-44			N/A	A/A	A/A	2
30-34.9	A/Z	0.01			N/A	N/A	A/N
35-35.9	A/A	AVA				N/A	AN
40-44.9	N/A	NA	NA	AN AN		A/N	N/A
45-49.9	N/A	AVA	NA	A/N		NIA	N/A
50-54.9	NA	N/A	NA	AN 			N/A
55-59.9	N/A	NA	NA	A/N		A/N	N/A
60-64.9	N/A	N/A	A/A	A/N		N/A	N/A
AE ED O	N/A	A/A	AX	A/N			

STABILIZED LAND EMISSION FACTORS - averaged over 7 tested suppressants NOT CORRECTED FOR EFFECTS OF SPIKE - TORN UP BY TRUCK TIRE Table E.37

STABILIZED LAND EMISSION FACTORS - averaged over 7 tested suppressants CORRECTED FOR EFFECTS OF SPIKE - TORN UP BY TRUCK TIRE Table E.38

	Geom mean flux	Geom mean flux	Geom mean flux	Geom mean spike	Geom mean spike	Geom mean spike	Number
(uam)	-1 Std. Dev.		+1 Std. Dev.	-1 Std. Dev.		+1 Std. Dev.	of runs
	(ton/acre/hr)	(ton/acre/hr)	(ton/acre/hr)	(ton/acre)	(ton/acre)	(ton/acre)	spike corrected
10-14.9	A/N	<b>1.87E-</b> 03	N/A	NA	4.05E-03	N/A	5
15-19.9	7 20E-04	3.80E-03	2.01E-02	2.10E-05	2.67E-04	3.40E-03	22
20-24.9	1.04E-04	8.89E-04	7.60E-03	9.09E-06	5.64E-05	3.50E-04	58
25-29.9	1.01E-04	4.70E-04	2.19E-03	2.56E-06	1.63E-05	1.04E-04	46
30-34.9	N/A	3.57E-03	N/A	NA	9.68E-06	N/A	6
35-35.9	N/A	AN	N/A	N/A	N/A	AN	N/A
40.44.9	N/A	NA	AN	N/A	N/A	NA	N/A
45.49.9	N/A	N/A	NA	NA	N/A	NA	N/A
50-54.9	N/A	NA	NA	N/A	N/A	NA	N/A
55-59.9	N/A	A/A	N/A	NA	NA	N/A	N/A
60-64.9	NA	N/A	N/A	NA	N/A	N/A	٨٨
65-69.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Figure E1 - Phase I stabilized uncorrected fluxes - not torn up

Geometric mean +/- 1 standard deviation - excludes baseline (untreated) surfaces

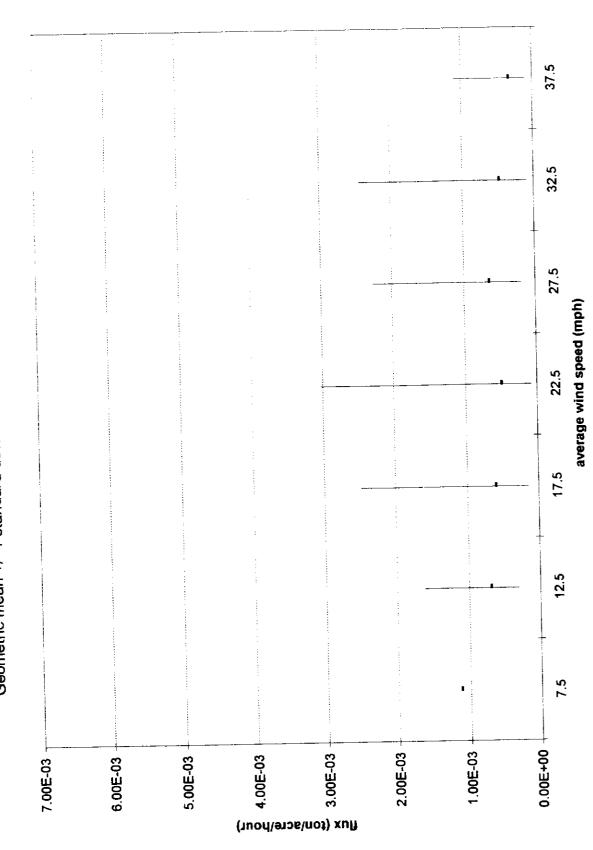



Figure E2 - Phase I stabilized uncorrected fluxes - not torn up - same scale as Phase II (Fig E3)

Geometric mean +/- 1 standard deviation - excludes baseline (untreated) surfaces

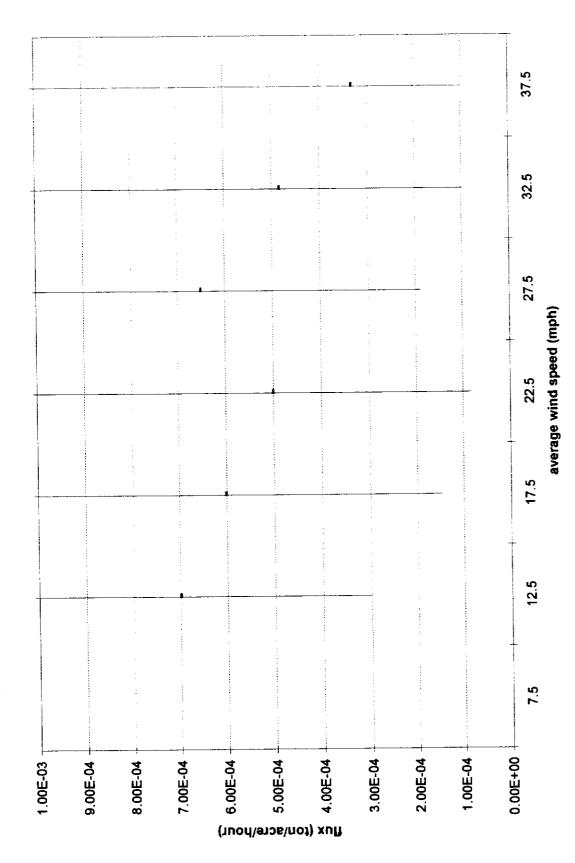



Figure E3 - Phase II stabilized uncorrected fluxes - not torn up

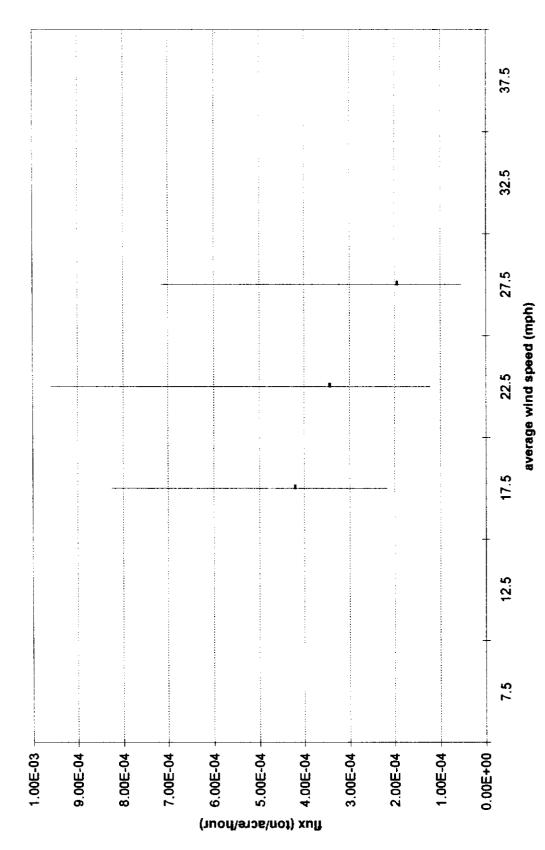



Figure E4 - Phase II stabilized spike-corrected fluxes - not torn up



Figure E5 - Phase II surface fluxes - torn up by truck tire, not spike-corrected

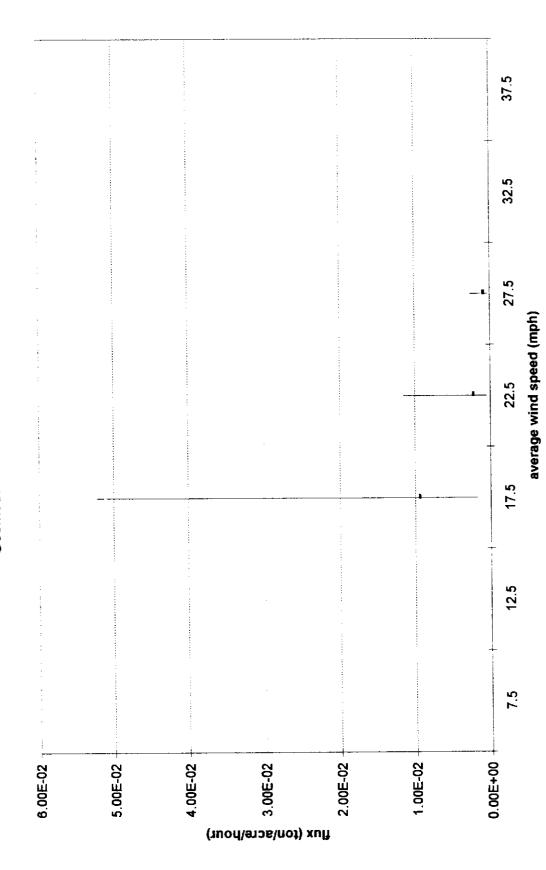



Figure E6 - Phase II surface fluxes - torn up by truck tire, not spike-corrected - (same scale as Fig E3)

## Geometric mean +/1 1 standard deviation (17.5 mph flux is off top of scale)

1.00E-03	9.00E-04	8.00E-04	7.00E-04	6.00E-04	5.00E-04	4.00E-04	3.00E-04	2.00E-04	1.00E-04	0.00E+00
										7.5
										12.5
										17.5
			:							22.5
										27.5
			:	:						32.5
							:		:	37.5

Figure E7 - Phase II surface fluxes - torn up by truck tire, spike corrected (same scale as Fig E5)

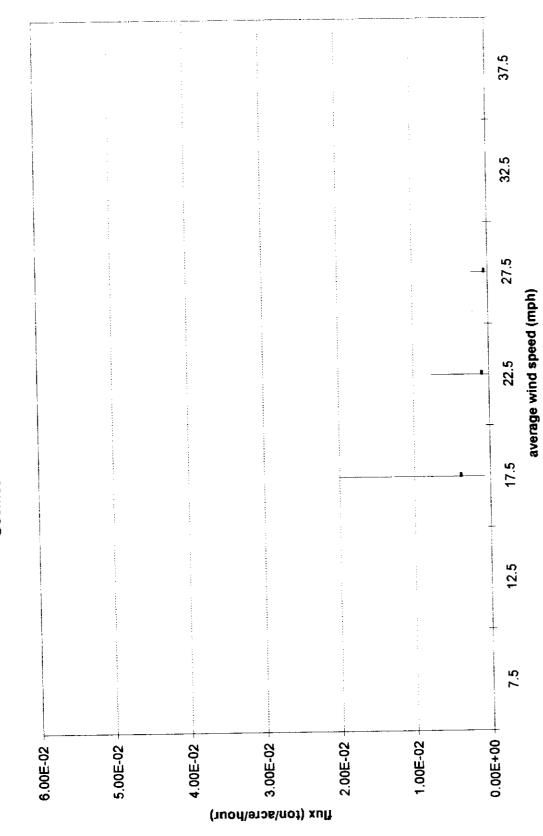



Figure E8 - Phase II surface fluxes - torn up by truck tire, spike corrected (rescaled to same as Fig E6)

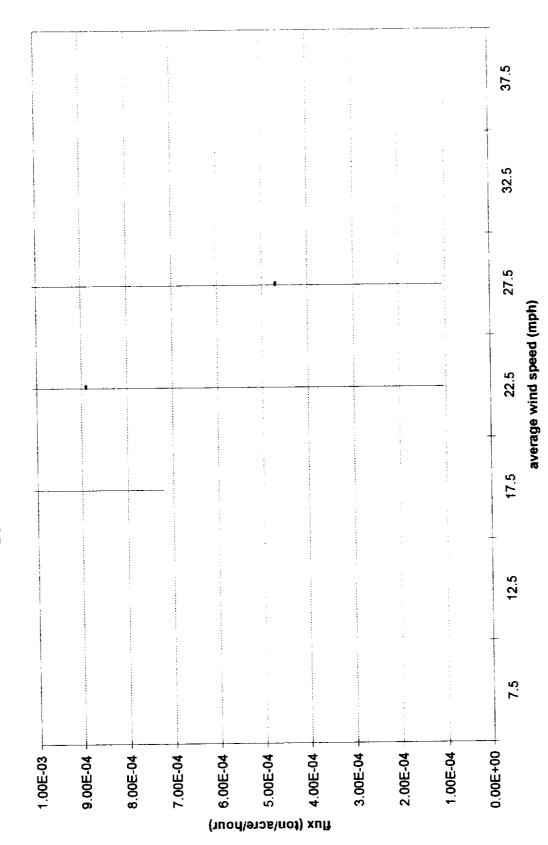
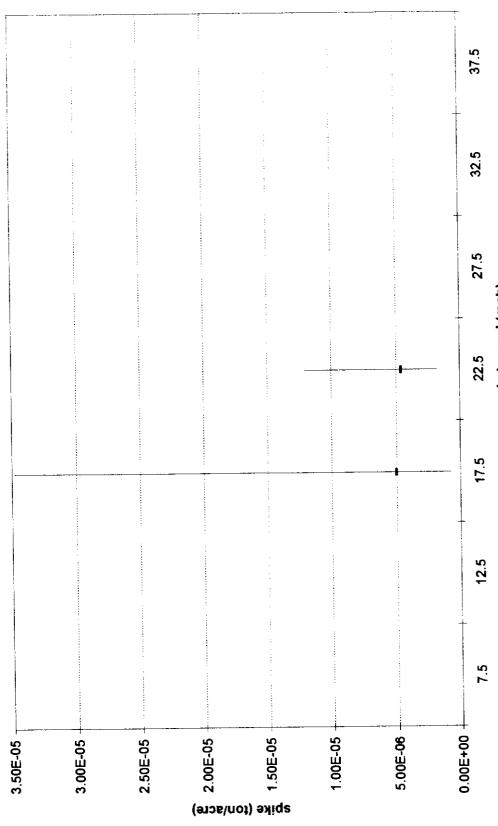




Figure E9 - Phase II not torn up spikes - 1/1000 scale of Figures C3 and C4

Geometric mean +/- 1 standard deviation



average wind speed (mph)

Figure E10 - Phase II torn-up spikes - 1/10 scale of Figures C3 and C4

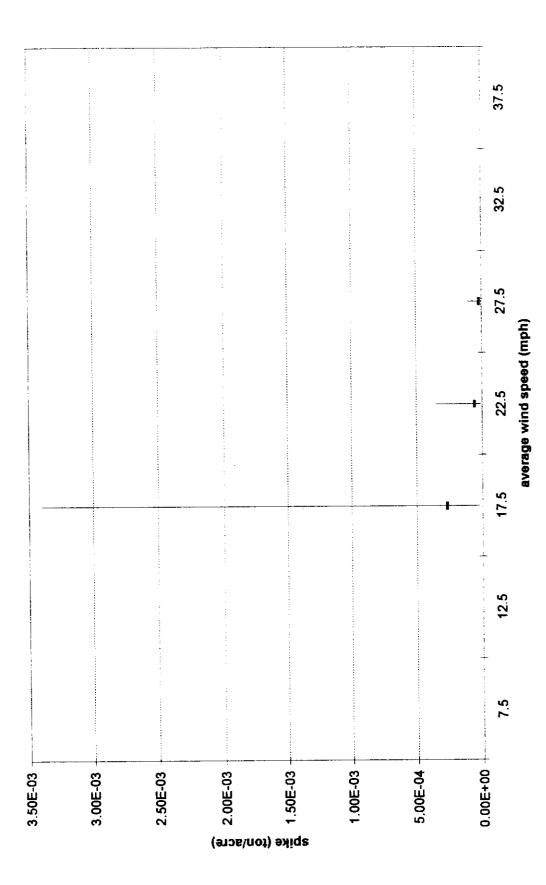




Figure E11 - Phase II - Not Torn Up - Comparison of not spike-corrected to spike-corrected fluxes

27.5corr average wind speed (mph) and manipulation - notc = not-corrected, corr = spike corrected 27.5notc 22.5cort 22.5notc 17.5cort 17.5notc 0.00E+00 1.00E-04 1.00E-03 3.00E-04 2.00E-04 7.00E-04 9.00E-04 8.00E-04

Figure E12 - Phase II - Torn Up - Comparison of not spike-corrected to spike-corrected fluxes



Geometric mean +/- 1 standard deviation

average wind speed (mph) and manipulation - notc = not-corrected, corr=spike-corrected

## Bibliography

- Haun, J.A. "Estimation of PM-10 from vacant lands in the Las Vegas Valley", M.S. thesis, Civil Engineering, University of Nevada, Las Vegas, December 1995. 215 pp.
- Speck, R.L, and T.R. McKay, "Soil Survey of Las Vegas Valley Area, Nevada, Part of Clark County", US Department of Agriculture, Soil Conservation Service, Report A57.38:L33/2, 1985. 194pp. 16 maps.